 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P87061 from www.uniprot.org...
The NucPred score for your sequence is 0.76 (see score help below)
1 MSFLFKRNKGSAHKPTKPNFSKTSTTPSTSQLKHSHESNVKMSTSTVTEH 50
51 RKKPTGSGSHITASPWSKLTVRGSSNVLPRYSHASHLYAEGGQEIYIFGG 100
101 VASDSQPKNDLWVLNLATSQFTSLRSLGETPSPRLGHASILIGNAFIVFG 150
151 GLTNHDVADRQDNSLYLLNTSSLVWQKANASGARPSGRYGHTISCLGSKI 200
201 CLFGGRLLDYYFNDLVCFDLNNLNTSDSRWELASVVNDPPPARAGHVAFT 250
251 FSDKLYIFGGTDGANFFNDLWCYHPKQSAWSKVETFGVAPNPRAGHAASV 300
301 VEGILYVFGGRASDGTFLNDLYAFRLSSKHWYKLSDLPFTPSPRSSHTLS 350
351 CSGLTLVLIGGKQGKGASDSNVYMLDTSRFRLGSVPTTSGRQRNTSFFSN 400
401 STGNTNPSAFNGLLTSSRIPSYNGSKVRSTSHPSRQQYIGSSNSRFNTRH 450
451 QTISTPVSGRASNDLPSPVVPTRSNSSSILQPSYNLNSHSSDRRNTNDDD 500
501 QSSLNSQQLSNQAKAQGEVSPTLSFVPSSHSMEQGNGSVASANNAQSEAA 550
551 TRSINSISEVSEVRFPEQSSVKTVDERKSLDGRITSVTLETLVEKYSELS 600
601 KQQIVEWFKSKLYEILRDSASKIDSLTEKLKVANAEKNAALCEAALEKVP 650
651 LAKHNKLSDGTFSTPDKENVQSTNDAHIMQENFSLHKALEVMRETSSDLD 700
701 KQLKDATASQKELIVQTSSFQKELVEERERHNAISKRLQEIESLYRDREL 750
751 LVTNLEDQLVDQTVTINKFAFERDQFRERSMGFENTIKDLTRKMEATDML 800
801 NVSLHESLRSVQTENSELVTEMALLKAELVKKQAIIDANANIYDKLTADH 850
851 TNYETVSADINQNLKETLDKLLNGSSDFKNNEIELLHDQIRITNAKLEKR 900
901 EKLINASKYIEDTLRSEIQEAAEKVSNLEFSNFNLKEENSNMQLQLMKAL 950
951 EQRNTGAKQLVNLRMQLSTATSELDMLKLKLRTTALALEESPDDYSDILS 1000
1001 ILRADMSPFHDLHKQCGVLIDTLNGVKRGFGIFEKKFTDYHKFLENISDK 1050
1051 LKSEEDTSLETPIHENQSIQSDQIKEVGEVLSAIKSLSDSVMLLKNQIDD 1100
1101 LAKEKLPLSSSDDEKVNIKEKTDFMKLLVKSGLSNPPAKEPVHDNEN 1147
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.