 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P87078 from www.uniprot.org...
The NucPred score for your sequence is 0.91 (see score help below)
1 MSESESDYFTDGSEDDFVPTSKKSTKKNASSKSKQPLGDATNSTVSSSRS 50
51 STPKPTNASETYQKLSQLEHILKRPDTYIGSVEKTKTEMWCFDAETESMV 100
101 FKEVTIVPGLYKIFDEILVNAADNKIRDPSMKNIRVKIDAENNIIEVMND 150
151 GKGIPIEMHTKENMYIPELIFGNLLTSSNYDDDQKKVTGGRNGFGAKLCN 200
201 IFSTQFEVETADLNMGKLYKQSWTNNMSNVSKPKITTLRTKKEYTKITFR 250
251 PDLSKFDMDCLDNDLLSVLRRRVYDLCGTVKNCNIYLNDKRLNISSFKGY 300
301 VEMYVKAIKERSPEPEPQDGTIKNFTTIVHEVFNDRWEVAFAVSDGSFNQ 350
351 VSFVNSIATTSGGTHVKYVSDQIINKLVETLSKKEKGKKKLMIKPQEVRD 400
401 NMFLFINCLIENPAFTSQTKEQLTTKVSQFGGKDKFVANDNLINRILKTS 450
451 IVDKIRAIANANEDKALQKADGSRKSRIKGQVNLVDANKAGTKDGHNCTL 500
501 ILTEGLSAMNLAVAGLSVVGRDYYGCFPLRGKLLNVREASADQISKNAEI 550
551 NSLKQIIGLQHKKVYTAENIKSLRYGHIMIMTDQDQDGSHIKGLIINFLE 600
601 TSFPGLLDIPGFLLEFITPIVKVTVKARGAGGKRVIPFYTMPEFEHWRDT 650
651 EGKQCRWTQKYYKGLGTSTPMEAREYFTALDRHLKRFHALQGEDKDYIDL 700
701 AFSKKKADERKEWLQGFLPGTHLDPEITEIPISDFINKEFILFSMSDNVR 750
751 SIPSVLDGFKPGQRKVLYGCFKKKLRSEIKVAQLAGYVSENTGYHHGEQS 800
801 LVQTIIGLAQNFVGSNNINVLKPNGSFGSRAAGGKDFSAARYIFTELSEI 850
851 TRKIFNPLDDPLYTYVQDDEQTVEPEWYLPVLPMILVNGAEGIGTGWSTN 900
901 IPSYNPKDLVTNIRRLMNGEELQEMTPWYKGWGGDLEPMGPQKFKVSGRI 950
951 EQIDSNTVEITEIPVKTWTNNVKEFLLSGFGNEKTQPWIKDMEEHHTTSI 1000
1001 RFVVKLTDAEMQKSLRIGLLERFKLVSSLSLANMVAFDPMGRIKKYNDVL 1050
1051 EIIKDFYYVRLEYYQKRKDYMTDNLQNQLLMLSEQARFIKMIIEKQLSVA 1100
1101 NKKKKQLVALLEEHNFTKFSKDGKPIKSSEELLTGDDADEEEETQEQEGD 1150
1151 EDVGNTSVANIQEGEPEQAAHVPETIYSSYDYLLGMAIWSLTYERFMRIM 1200
1201 QQRDQKEAELNALLSKSAKDLWNQDLDEFLAEFDKFLLRDEQERESLASN 1250
1251 GKKKSTKRRAKATATKDQPNNKKVKVEPKEKKSTSAKPIVKKEASNEPQA 1300
1301 SSSSKPKEKDDILSFFSSSSSSAKKTTKPSGRATSNKEIETITLFSDDDD 1350
1351 DEDIFNLNSSSSTKVKKEAKSRSATPAAEKSKKSKSSGKQSILDELEDLE 1400
1401 ILGNFDKPEPKERRTRETASTTKRNTKKKPVIIDSDDEDEDEEDDIVMSD 1450
1451 GDDDDDFIVDE 1461
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.