 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P87253 from www.uniprot.org...
The NucPred score for your sequence is 0.92 (see score help below)
1 MNDEDKVHDISKKIEREKALINAAQAMRQQTNNEQVRSKLDTQMREGRRN 50
51 LEFFEEKLRELQMRRLGHGVDNMSLGASPMSGSHRQSVDDFEGYGAPSPP 100
101 PKEDVRGHSSHQSQGSGPLMPASAPYPGGPPDSNVPRARPNYTRLDLIKF 150
151 DTPHLGPRIQLMLSQIQFKLNVEEQYLKGIEKMVQLYQMEGDKKSKLDAA 200
201 AKRVESKQKIVLLKQALKRYEELHIDIDVDGPDDDSINLPALRKPLSGTL 250
251 SIRILAVKDVDHAPLGRFARSPETFIAVKAEDIVVARTKPSRNDKWEAEF 300
301 HTFPVDKTNEIEFTVYDKPAEHPVPIAMLWVRISDIVEELRRKKIEAEMT 350
351 SAGWVSADRVGSRAPPPQFPMGAQSPQFAAPPTSPGSQEQNTMIPPQAPP 400
401 PSQVVSQPVDGWFNLEPYGQIHLSFNFIKGARPQGMDRLGRKGAVRQRKE 450
451 EVHEMYGHKFVQKQFYNIMRCALCGDFLKYSAGMQCEDCKYTCHTKCYTS 500
501 VVTKCISKSNAETDPDEEKINHRIPHRFIPFSNLTANWCCHCGYMLPIGS 550
551 KKNSRKCSECALTAHAQCVHLVPDFCGMSMAVANQILEGMRTQKKTHKDK 600
601 ASSMSERTLRPGSKTSISSGSIAQASTYSGSTAYTSIASPEATEAAKLMY 650
651 SQTTPRPGGPDRTSTSSTTASAAAAAAMAPKHSSQPSQAGSIPDFGGSPG 700
701 YGRPDSRDDEYSAQQQQGYGSPQQRKYNPADYANIDAYSSPQARPQQQQQ 750
751 QQQQTPQQVSPMYQQNPQTPISKPQPVAPSYDNQVVPSASGVPVPTKKPL 800
801 PSATDPGTGMRIGLDHFNFLAVLGKGNFGKVMLAETKKSRKLYAIKVLKK 850
851 EFIIENDEVESIRSEKRVFLIANRERHPFLTNLHACFQTETRVYFVMEYI 900
901 SGGDLMLHIQRGMFGTKRAQFYAAEVCLALKYFHENGVIYRDLKLDNILL 950
951 TLDGHIKIADYGLCKEDMWYGSTTSTFCGTPEFMAPEILLDKKYGRAVDW 1000
1001 WAFGVLIYQMLLQQSPFRGEDEDEIYDAILADEPLYPIHMPRDSVSILQK 1050
1051 LLTREPDQRLGSGPTDAQEIMSQPFFRNINWDDIYHKRVQPPFLPQIKSA 1100
1101 TDTSNFDSEFTSVTPVLTPVQSVLSQAMQEEFRGFSYTADFE 1142
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.