SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P87319 from www.uniprot.org...

The NucPred score for your sequence is 0.80 (see score help below)

   1  MLEGLVAGLLNKILGSYVDNLDTKQLNIGVWGGHVSLHNLRIKPEALDKL    50
51 GIPIEITSGLIGTFTLEIPWSNLRNKSLTINIEDIYLSIHPQAKNSLTRD 100
101 ELEQSQQALKQEQLDSFEILRKNFRETLEESSSNPNISRKQSFIEYLIAK 150
151 LTDNIQIYIERIHLRFEDNLSDLEKPYSLGLTLYSLRVTSTDASFTEYLL 200
201 STDPIPSSCIHKIITVDYFSIYWISKCEISKCTTTEDIFSYLKNLIPSAE 250
251 KSPAYNYILKPLRATAHVVLFRHPTDQIMQLRGKLSVEEISITLSDHMYY 300
301 SLLGVIDYFRVVMKQQYYLQYRPKSTPKEKPLEWFKYAILVVKDSVHESR 350
351 YHWTWKYFKRRRDDRIAYMHIIRKRYLNEQISKEEIDLQKKIEKRNSTYD 400
401 LIKYRSRVHTSLIEERNSIYLKPKTSAAHGLYDWFSGYIRKPQSQDEDTL 450
451 ASTDKTAADLTDQEQKEFFSAIEWSGQLYPDTVNLDPDMCMANVEVSIAK 500
501 GSFVIQSHINGRVIPLIKQRFESFATECFIRPQSLKLKVSLKDLDMFDGI 550
551 TNPELEPARVIFAKPSVEESESLQKIPEAYRTHLFFLLLDTKPVYKASST 600
601 LIVHLRTLVIIYNRVCIESLLAFFVPPRTKIEHVSEWGYSAAAKVMTLAR 650
651 QTRASLDYALEMHKTSDMTIDLQAPLIVVREECTDLKSPTLFLDVGRALV 700
701 HTQLVDDAIIDKFRKLQSKKINNEQLKQLENLMYDKFTISLFNVRCLIGP 750
751 DYETGWRCLPKGCDYHILKECSLDINFEISILQKATNLTKFKVSSHMKHA 800
801 EIMFSDVQYKVFINMMSNILPTLPVAEIPFTYQQFLDAVKPPPFFDAPDN 850
851 FQITHTSLGSHANENTAAQFMAQQIFAFYFKVDYAICSLYRRSENYLIPV 900
901 VRAFTEFYIDLVVRKFDYLVTSKLNDLVIKEFTYPSSLCDNVLVRSSPSP 950
951 KNNFDDTVFISYTSIDYDSPELDSVYEGVRTTIAVVLSDLILNVEPTGFS 1000
1001 FVYDFIRATFTSLNDEYMIGEDPELTRKISPVEGIIPEDANVRFDNVDIF 1050
1051 LYDCDQHFSTVCLYSANMHMEFREKFFLQARFYDLEVKNHMKSNNPPKTI 1100
1101 VKIDDNDLFIFKYESYDIPKDISKPTCDCVYDISFGSLTFYFQKSYFNAI 1150
1151 YDFLLKLKRFQELFSSIRYAIYYKLYGNKVSLTYPKFELRIKHPKVYFDD 1200
1201 VLDEERNCRMQLIVKPQSFYAFSKCPIVEKNSKKSIFSCEITKVEFHTAV 1250
1251 PSSSHHDVLMEENNVHLDLTYDANYTTGAYVFKATGDLDPVILNMCQSHH 1300
1301 VIFWDLIDVATTFARVDSSFYTSENLRRELDKAFDRSGTAAKLKHPKKTV 1350
1351 VETLDILTTFNLPEIRLNVHTDDFWIHGGDLTQLHSILSFFGFSLDYNFY 1400
1401 SSGRCYAEFSIDSIQLKDCNPQDNVVFLDVLEYSENHNRLVNGCLEYDSQ 1450
1451 NPRYNLVLDIDSPKIFVNLNYLYSIWSIFVHWHRAYYSHLDYLTEVEYFI 1500
1501 MGNPNQNACGEESYWYYRITFVDMTLLFFRNVSDANLYSLPMFFGELLIT 1550
1551 QQSIFAVTANNMKINACPLSETANISNQLADPFGFRYTYSQHTVNKIQII 1600
1601 TNITLDFDSFVLRTTVNDFLFLQTILRKIYNFYYALYDVPTTDVELLKRT 1650
1651 KDDQLATNPDFLQLSVDTGQPSSVFGIRICKEEFLLTVDGIRLLVISQLH 1700
1701 DLPLLNINIKPFQVDLNDWSSELNSNAHLELFMNFYNFSNSHWEPFLEPW 1750
1751 KVGVHISRNPNTSKTAVHVFSREKLDLVITPQLIETLHFGFTKVISTPFP 1800
1801 IEFKCDAPYRIHNYTGHAVSVWADFENAADSCVRHLENNEETDWKFEEWR 1850
1851 QMQDVVKQDQDRSYIGFHFENSKWESLRHVRVNRVGEHIYPLISYDQDEL 1900
1901 KHYMVVDVNLGEDYIKHITLRSPLLLINETQMEIDVVFCDSDGIQRSQIY 1950
1951 HMSPEESCSLPIETAYYYSIHIRPVSEFKFNWTSEAISWKDLVDNKQSLV 2000
2001 TCQHSDNTFSTPACRFAANAELKSQTISNHYPFMHITISALLEVKNLLPI 2050
2051 DLNIRIIDKDQEGVWMSNVGIGECAYVHSINISHVLLLQAESSESHYLPS 2100
2101 SLATIITNDSAQERDEYMTITLQGGRKTRLGLSYTEKYPGIYHIEIFSPY 2150
2151 IIINKSGSFLFVGPKNDYNRISFSSASLSSGEDGKVVPCMFSYSHNYGSR 2200
2201 RCRLRADNSNWSEPVSFDAIGSVFEVELPSKEDHNKVYRLGIFVETGPDG 2250
2251 YSKTNIVTITSRFIVRNKTRWSLVIAEPYNDFIAEIAPEGEEFLTYLRKH 2300
2301 SHPMLKLSSSDCYLWSSSFYIEEIGSTHVRLMTSEGEKLLRLEIVIKNAT 2350
2351 IFISIFEETGDWPYYIKNESGVLLKFWQVNPIDASEGKNNTALLKYHDIP 2400
2401 PHSEVKYSWDYPCCANKEIALCYGDQKCLTTLAEIGPLSPFKFTDASNNT 2450
2451 KFISRDIVANGLSKILILKDYDPSKAVRKPKIYSKVSTEERDFNLEQFDS 2500
2501 GIDLSVKFLLEGIGISLVERNTQELAYLTFHGINLFFTDSHLIRTFKLDV 2550
2551 RWIQIDNQLYGGIYPIILYPSILSQEDTMNDNSLLPTFHSMVAVVKNDTY 2600
2601 GVTYVKYATILLQELTIEIDEDFAFAALEYIKDSVPRSKRNTGKMFDDSL 2650
2651 ELVPENLGNDLKVYFEVLNLQPTEMHLSFVRTERINNTDGTVVSSHNPFV 2700
2701 FFVNVLSMAIGNINDAPVRLNALLMDNAHVSLRRLFELVKNHYSQELLSQ 2750
2751 VHKIVGSADFLGNPVGLFTTITSGFADIFYEPFHGFILNEGSYELGIGFA 2800
2801 KGTASFIKKAVFGITDSISKVTGTISRSLSVITLDPKFQSRRRAARIRNR 2850
2851 PVHILYGVTAGAASLYTGVRSGVRGLALQPIIGARRNGLPGLVKGLGKGL 2900
2901 VGFTTKPLVGLFDFASSISEGARNTTTVFDERHIEKLRLSRLMSDDGVVY 2950
2951 PFQLREALGQYWLKHLDNGRYFKDFYKAHIIIENKVLVILTNNRILFVQP 3000
3001 QQLNCKKEIHLSKVKTVKLQSKEHIFLQLLKGVNFEFSVPENSVRTFFYR 3050
3051 KIRDELAAYKHKVNYELEVAL 3071

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.