SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P97433 from www.uniprot.org...

The NucPred score for your sequence is 0.86 (see score help below)

   1  MELSCSEVPLYGQKTVYAKFGKNVYLPEDAEFYFVYGGSHQRHVVIADRV    50
51 QDNVLQSSIPGHWLQETVTVSVCLCSEGYSPVTMGSGSVTYVDNMACRLA 100
101 RLLVTQADRLTACSHQTLLTPFALTVEALPALDEELVLALTQLELPLGWT 150
151 VLGNSSLEVSLHRESLLHLAVRWALPKLFHFLLCLPGGVKALKLPNEEAT 200
201 TPLDLALQGGHSTLVEDITNFQGSHSPGFSRLRLNEEATLQFVHSSETLT 250
251 LTVNHTAEHLLEADIKLFRKYFWDRAFLVKALEQEAKTEKATMPSGAAET 300
301 EEEVRNLESGRSPSEEEEDAKSIKSQVDGPSEHEDQDRLPLDRSFDGLKK 350
351 SKHVPASLAAGQLSDVLNGGDEVYANCMVIDQVGDLDINYINLEGLSTHT 400
401 SPESGRSMLGPQACMHTLPPDTSPCGRPLIENSEGTLDAAASQSFVTPSS 450
451 SRTSNLNLSFGLHGFEKEQSHLKKRSSSLDALVADSEGEGGSEPPICYAV 500
501 GSQSSPRTGLPSGDELDSFETNTEPDCNISRTESLSLSSTLHSKESLLSG 550
551 IRSRSYSCSSPKISSGKSRLVRDFTVCSTSEEQRSYSFQEPPGEKRIQEE 600
601 EWDEYVIPAKSESEKYKVSRTFSFLMNRMTSPRNKSKMKNKDTKEKEKMN 650
651 RHQFVPGTFSGVLQCSGCDKTLLGKESLQCANCKANTHKGCKDAVPPCTK 700
701 KFQEKYNKNKPQSILGSSSVRDVPAPGLSLHPSSSMPIGLPAGRKEFAAQ 750
751 VHPLSRSVPGTTLESFRRAVTSLESEGDSWRSRSHSDELFQSMGSSPSTE 800
801 SFMMEDVVDSSLWIDLSSDAQEFEAESWSLVVDPSFCSRQEKDVIKRQDV 850
851 IFELMQTEVHHIQTLLIMSEVFRKGMKEELQLDHSTVDKIFPCLDELLET 900
901 HRHFFFSMKERRQESCAGSDRNFVINQIGDILVQQFSEENASKMKRIYGE 950
951 FCSHHKEAMSLFKELQQNKKFQNFIKIRNSNLLARRRGIPECILLVTQRI 1000
1001 TKYPVLVERILQYTKERTEEHRDLCKALGLIKDMIAAVDLKVSEYEKNQK 1050
1051 WLEILNKIENKTYTKLKNGHVFRKQALLSQERALLHDGLVYWKTATGRFK 1100
1101 DILALLLTDVLLFLQEKDQKYIFAAVDQKPSVISLQKLIAREVANEERGM 1150
1151 FLISASSAGPEMYEIHTNSKEERNNWMRRIQQAVESCPEEEGGRTSESDE 1200
1201 ERRKAEARVAKIQQCQEILSNQDQQICTYLEEKLHIYAELGELSGFEDVH 1250
1251 LEPHLLIKPDPGEPPQAASLLAAALREAESLQVAVKASKMGDVSQSSEES 1300
1301 PGGTVLMDTPSTQDVPASPTASLVTEGTEGRGCWDVDPGLQGVVTDLAVS 1350
1351 DAGEKVEYRSFSGSSQSEIIQAIQNLTRLLYSLQAALTIQDSHIEIHKLV 1400
1401 LQQRESLAPSHSFRGGPLQDQEKSRYLEKQREELANIHKLQHQFQQEQRR 1450
1451 WHRTCDQQQREQEAQESWLQARERECQSQEELLLRHRSELDHQLQEYQQS 1500
1501 LERLREGQRMVERERQKMRVQQGLLGHCKHSRQRSLPAVFSPGSKEVTEL 1550
1551 NRAESLCHENSFFINEAFGHMSLNTSNKPNPSGVPWDAHPLEGSHFDLAR 1600
1601 TSESPTELKIDISQPPDVNSELWTTGPGHQRPALQENSKESYKNVADLDS 1650
1651 FQSESSSPQDSNQRGPQPQTLTTEAKLSLPMAAGHGGDAGDGAEENILYL 1700

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.