SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P97499 from www.uniprot.org...

The NucPred score for your sequence is 0.88 (see score help below)

   1  MEKLCGHVPGHSDILSLKNRCLTMLPDLQPLEKIHGHRSVHSDILSLENQ    50
51 CLTMLSDLQPTERIDGHISVHPDILSLENRCLTMLPDLQPLEKLCGHMSS 100
101 HPDVLSLENQCLATLPTVKSTALTSPLLQGLHISHTAQADLHSLKTSNCL 150
151 LPELPTKKTPCFSEELDLPPGPRALKSMSATAQVQEVALGQWCVSKEKEF 200
201 QEEESTEVPMPLYSLSLEEEEVEAPVLKLTSGDSGFHPETTDQVLQEKKM 250
251 ALLTLLCSALASNVNVKDASDLTRASILEVCSALASLEPEFILKASLYAR 300
301 QQLNLRDIANTVLAVAALLPACRPHVRRYYSAIVHLPSDWIQVAEFYQSL 350
351 AEGDEKKLVSLPACLRAAMTDKFAEFDEYQLAKYNPRKHRSKRRSRQPPR 400
401 PQKTERPFSERGKCFPKSLWPLKNEQITFEAAYNAMPEKNRLPRFTLKKL 450
451 VEYLHIHKPAQHVQALLGYRYPATLELFSRSHLPGPWESSRAGQRMKLRR 500
501 PETWERELSLRGNKASVWEELIDNGKLPFMAMLRNLCNLLRTGISARHHE 550
551 LVLQRLQHEKSVVHSRQFPFRFLNAHDSIDKLEAQLRSKASPFPSNTTLM 600
601 KRIMIRNSKKNRRPASRKHLCTLTRRQLRAAMTIPVMYEQLKREKLRLHK 650
651 ARQWNCDVELLERYRQALETAVNLSVKHNLSPMPGRTLLVYLTDANADRL 700
701 CPKSHSQGPPLNYVLLLIGMMVARAEQVTVCLCGGGFVKTPVLTADEGIL 750
751 KTAIKLQAQVQELEGNDEWPLDTFGKYLLSLAVQRTPIDRVILFGQRMDT 800
801 ELLKVAKQIIWQHVNSKCLFVGVLLQKTQYISPNLNPNDVTLSGCTDGIL 850
851 KFIAEHGASRLLEHVGQLDKLFKIPPPPGKTQAPSLRPLEENIPGPLGPI 900
901 SQHGWRNIRLFISSTFRDMHGERDLLMRSVLPALQARVFPHRISLHAIDL 950
951 RWGITEEETRRNRQLEVCLGEVENSQLFVGILGSRYGYIPPSYDLPDHPH 1000
1001 FHWTHEYPSGRSVTEMEVMQFLNRGQRSQPSAQALIYFRDPDFLSSVPDA 1050
1051 WKPDFISESEEAAHRVSELKRYLHEQKEVTCRSYSCEWGGVAAGRPYTGG 1100
1101 LEEFGQLVLQDVWSMIQKQHLQPGAQLEQPTSISEDDLIQTSFQQLKTPT 1150
1151 SPARPRLLQDTVQQLLLPHGRLSLVTGQAGQGKTAFLASLVSALKVPDQP 1200
1201 NEPPFVFFHFAAARPDQCLALNLLRRLCTHLRQKLGELSALPSTYRGLVW 1250
1251 ELQQKLLLKFAQSLQPAQTLVLIIDGADKLVDRNGQLISDWIPKSLPRRV 1300
1301 HLVLSVSSDSGLGETLQQSQGAYVVALGSLVPSSRAQLVREELALYGKRL 1350
1351 EESPFNNQMRLLLAKQGSSLPLYLHLVTDYLRLFTLYEQVSERLRTLPAT 1400
1401 LPLLLQHILSTLEQEHGHDVLPQALTALEVTRSGLTVDQLHAILSTWLIL 1450
1451 PKETKSWEEVLAASHSGNPFPLCPFAYLVQSLRSLLGEGPVERPGARLCL 1500
1501 SDGPLRTTIKRRYGKRLGLEKTAHVLIAAHLWKTCDPDASGTFRSCPPEA 1550
1551 LKDLPYHLLQSGNHGLLAEFLTNLHVVAAYLEVGLVPDLLEAHVLYASSK 1600
1601 PEANQKLPAADVAVFHTFLRQQASLLTQYPLLLLQQAASQPEESPVCCQA 1650
1651 PLLTQRWHDQFTLKWINKPQTLKGQQSLSLTMSSSPTAVAFSPNGQRAAV 1700
1701 GTASGTIYLLNLKTWQEEKAVVSGCDGISSFAFLSDTALFLTTFDGHLEL 1750
1751 WDLQHGCWVFQTKAHQYQITGCCLSPDRRLLATVCLGGYLKLWDTVRGQL 1800
1801 AFQYTHPKSLNCVAFHPEGQVVATGSWAGSITFFQADGLKVTKELGAPGP 1850
1851 SVCSLAFNKPGKIVAVGRIDGTVELWAWQEGARLAAFPAQCGCVSAVLFL 1900
1901 HAGDRFLTAGEDGKAQLWSGFLGRPRGCLGSLPLSPALSVALNPDGDQVA 1950
1951 VGYREDGINIYKISSGSQGPQHQELNVAVSALVWLSPSVLVSGAEDGSLH 2000
2001 GWMFKGDSLHSLWLLSRYQKPVLGLAASRELMAAASEDFTVRLWPRQLLT 2050
2051 QPHVHAVELPCCAELRGHEGPVCCCSFSPDGGILATAGRDRNLLCWDMKI 2100
2101 AQAPLLIHTFSSCHRDWITGCAWTKDNILVSCSSDGSVGLWNPEAGQQLG 2150
2151 QFSGHQSAVSAVVAVEEHIVSVSRDGTLKVWDHQGVELTSIPAHSGPISQ 2200
2201 CAAALEPRPGGQPGSELLVVTVGLDGATKLWHPLLVCQIRTLQGHSGPVT 2250
2251 AAAASEASGLLLTSDDSSVQLWQIPKEADDSYKPRSSVAITAVAWAPDGS 2300
2301 MVVSGNEAGELTLWQQAKAVATAQAPGRVSHLIWYSANSFFVLSANENVS 2350
2351 EWQVGLRKGSTSTSSSLHLKRVLQEDWGVLTGLGLAPDGQSLILMKEDVE 2400
2401 LLEMKPGSIPSSICRRYGVHSSILCTSKEYGLFYLQQGDSGLLSILEQKE 2450
2451 SGEFEEILDFNLNLNNPNGSPVSITQAKPESESSLLCATSDGMLWNLSEC 2500
2501 TSEGEWIVDNIWQKKAKKPKTQTLETELSPHSELDFSIDCWIDPTNLKAQ 2550
2551 QCKKIHLGSVTALHVLPGLLVTASKDRDVKLWERPSMQLLGLFRCEGPVS 2600
2601 CLEPWMEPSSPLQLAVGDTQGNLYFLSWE 2629

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.