SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching P97526 from www.uniprot.org...

The NucPred score for your sequence is 0.89 (see score help below)

   1  MAAHRPVEWVQAVVSRFDEQLPIKTGQQNTHTKVSTEHNKECLINISKYK    50
51 FSLVISGLTTILKNVNNMRIFGEAAEKNLYLSQLIILDTLEKCLAGQPKD 100
101 TMRLDETMLVKQLLPEICHFLHTCREGNQHAAELRNSASGVLFSLSCNNF 150
151 NAVFSRISTRLQELTVCSEDNVDVHDIELLQYINVDCAKLKRLLKETAFK 200
201 FKALKKVAQLAVINSLEKAFWNWVENYPDEFTKLYQIPQTDMAECAGKLF 250
251 DLVDGFAESTKRKAAVWPLQIILLILCPEIIQDISRDVVDENNTNKKLFL 300
301 DSLRKALAGHGGSRQLTESAAIACVKLCKASTYINWEDNSVIFLLVQSMV 350
351 VDLKNLLFNPSKPFSRGSQPADVDLMIDCLVSCFRISPHNNQHFKICLAQ 400
401 NSPSTFHYVLVNSLHRIITNSAWDWWPKIDAVYCHSVELRNMFGETLHKA 450
451 VQGCGAHPALRMAPSLTFKEKVTSLKFKEKPTDLEARSYKYLLLSMVKLI 500
501 HADPKLLLCNPRKQGPETQGSTAELITGLVQLVPQSHMPEVAQEAMEALL 550
551 VLHQLDSIDLWNPDAPVETFWEISSQMLFYICKKLTSHQMLSSTEILKWL 600
601 REILICRNKFLLKNKQADRSSCHSLYLYGVGCDLPASGNVTQMSVDHEES 650
651 LRTCAPGASLRKGRGNSSMDSTAGCSGTPPICRQAQTKLEVALYMFLWSP 700
701 DTEVVLVAMSCFRHLCEEADIRCGVDEVSVHNFLPNYNTFMEFASVSNML 750
751 STGRAALQKRVMALLRRIEHPTAGNTEAWEDTHAKWEQATKLILNYPKAK 800
801 MEDGQAAESLHKTIVKRRMSHVSGGGSIDLSDTDSLQEWINMTGFLCALG 850
851 GVCLQQRSSSGLATYSPPMGPVSERKGSMISVMSSEGNVDSPVSRFMDRL 900
901 LSLMVCNHEKVGLQIRTNVKDLVGLELSPALYPMLFNKLKSAISKFFDSQ 950
951 GQVLLTDSNTQFVEQTIAIMKNLLDNHTEGSSEHLGQASIETMMLNLVRY 1000
1001 VRVLGNMVHAIQIKTKLCQLVEVMMARRDDLSFCQEMKFRNKMVEYLTDW 1050
1051 VMGTSNQAADDDVKCLTRDLDQASMEAVVSLLAGLPLQPEEGDGVELMEA 1100
1101 KSQLFLKYFTLFMNLLNDCSEVEDENAQTGGRKRGMSRRLASLRHCTVLA 1150
1151 MSNLLNANVDSGLMHSIGLGYHKDLQTRATFMEVLTKILQQGTEFDTLAE 1200
1201 TVLADRFERLVELVTMMGDQGELPIAMALANVVPCSQWDELARVLVTLFD 1250
1251 SRHLLYQLLWNMFSKEVELADSMQTLFRGNSLASKIMTFCFKVYGATYLQ 1300
1301 KLLDPLLRIIITSSDWQHVSFEVDPTRLEPSESLEENQRNLLQMTEKFFH 1350
1351 AIISSSSEFPSQLRSVCHCLYQVVSQRFPQNSIGAVGSAMFLRFINPAIV 1400
1401 SPYEAGILDKKPPPRIERGLKLMSKVLQSIANHVLFTKEEHMRPFNDFVK 1450
1451 SNFDLARRFFLDIASDCPTSDAVNHSLSFISDGNVLALHRLLWNNQEKIG 1500
1501 QYLSSNRDHKAVGRRPFDKMATLLAYLGPPEHKPVADTHWSSLNLTSSKF 1550
1551 EEFMTRHQVHEKEEFKALKTLSIFYQAGTSKAGNPIFYYVARRFKTGQIN 1600
1601 GDLLIYHVLLTLKPYYAKPYEIVVDLTHTGPSNRFKTDFLSKWFVVFPGF 1650
1651 AYDNVSAVYIYNCNSWVREYTKYHERLLTGLKGSKRLIFIDCPGKLAEHI 1700
1701 EHEQQKLPAATLALEEDLKVFHNALKLAHKDTKVSIKVGSTAVQVTSAER 1750
1751 TKVLGQSVFLNDIYYASEIEEICLVDENQFTLTIANQGTPLTFMHQECEA 1800
1801 IVQSIIHIRTRWELSQPDSIPQHTKIRPKDVPGTLLNIALLNLGSSDPSL 1850
1851 RSAAYNLLCALTCTFNLKIEGQLLETSGLCIPANNTLFIVSISKTLAANE 1900
1901 PHLTLEFLEECISGFSKSSIELKHLCLEYMTPWLSNLVRFCKHNDDAKRQ 1950
1951 RVTAILDKLITMTINEKQMYPSIQAKIWGSLGQITDLLDVVLDSFIKTSA 2000
2001 TGGLGSIKAEVMADTAVALASGNVKLVSSKVIGRMCKIIDKTCLSPTPTL 2050
2051 EQHLMWDDIAILARYMLMLSFNNSLDVAAHLPYLFHVVTFLVATGPLSLR 2100
2101 ASTHGLVINIIHSLCTCSQLHFSEETKQVLRLSLTEFSLPKFYLLFGISK 2150
2151 VKSAAVIAFRSSYRDRSFSPGSYERETFALTSLETVTEALLEIMEACMRD 2200
2201 IPTCKWLDQWTELAQRFAFQYNPSLQPRALVVFGCISKRVSHGQIKQIIR 2250
2251 ILSKALESCLKGPDTYNSQVLIEATVIALTKLQPLLNKDSPLHKALFWVA 2300
2301 VAVLQLDEVNLYSAGTALLEQNLHTLDSLRIFNDKSPEEVFMAIRNPLEW 2350
2351 HCKQMDHFVGLNFNSNFNFALVGHLLKGYRHPSPAIVARTVRILHTLLTL 2400
2401 VNKHRNCDKFEVNTQSVAYLAALLTVSEEVRSRCSLKHRKSLLLTDISME 2450
2451 NVPMDTYPIHHGDPSSRTLKETQPWSSPRGSEGYLAATYPAVGQTSPRAR 2500
2501 KSMSLDMGQPSQANTKKLLGTRKSFDHLISDTKAPKRQEMESGITTPPKM 2550
2551 RRVAETDYEMETQRISSSQQHPHLRKVSVSESNVLLDEEVLTDPKIQALL 2600
2601 LTVLATLVKYTTDEFDQRILYEYLAEASVVFPKVFPLVHNLLDSKINTLL 2650
2651 SLCQDPNLLNPIHGIVQSVVYHEESPPQYQTSYLQSFGFNGLWRFAGPFS 2700
2701 KQTQIPDYAELIVKFLDALIDTYLPGIDEETSEESLLTPTSPYPPALQSQ 2750
2751 LSITANLNLSNSMTSLATSQHSPGIDKENVELSPTTGHCNSGRTRHGSAS 2800
2801 QVQKQRSAGSFKRNSIKKIV 2820

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.