  |  Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. | 
NucPred
Fetching  P97868  from www.uniprot.org...
The NucPred score for your sequence is 0.99 (see score help below)
   1  MSCVHYKFSSKLNYDTVTFDGLHISLCDLKKQIMGREKLKAADSDLQITN    50
  51  AQTKEEYTDDNALIPKNSSVIVRRIPIGGVKSTSKTYVISRTEPVMGTTK   100
 101  AIDDASASISLAQLTKTANLAEANASEEDKIKAMMSQSGHEYDPINYMKK   150
 151  TLVGPPPPSYTCFRCGKPGHYIKNCPTNGDKNFESGPRIKKSTGIPRSFM   200
 201  MEVKDPNMKGAMLTNTGKYAIPTIDAEAYAIGKKEKPPFLPEEPSSSSEE   250
 251  DDPIPDELLCLICKDIMTDAVVIPCCGNSYCDECIRTALLESDEHTCPTC   300
 301  HQNDVSPDALIANKFLRQAVNNFKNETGYTKRLRKQLPPPPPPVPPPRPL   350
 351  MQRNLQPLMRSPISRQQDPLMIPVTSSSAHSAPSISSLTSNPSALAPSVS   400
 401  GNPSSAPAPVPDITATVSISVHSEKSDGPFRDSDNKLLPAAALTSEHSKG   450
 451  ASSIAITALMEEKGYQVPVLGTPSLLGQSLLHGQLIPTTGPVRINAARPG   500
 501  GGRPGWEHSNKLGYLVSPPQQIRRGERSCYRSINRGRHHSERSQRTQGPS   550
 551  LPATPVFVPVPPPPLYPPPPHTLPLPPGVPPPQFSPQFPPGQPPPAGYSV   600
 601  PPPGFPPAPANISTPWVSSGVQTAHSNTIPTTQAPPLSREEFYREQRRLK   650
 651  EEEKKKSKLDEFTNDFAKELMEYKKIQKERRRSFSRSKSPYSGSSYSRSS   700
 701  YTYSKSRSGSTRSRSYSRSFSRSHSRSYSRSPPYPRRGRGKSRNYRSRSR   750
 751  SHGYHRSRSRSPPYRRYHSRSRSPQAFRGQSPTKRNVPQGETEREYFNRY   800
 801  REVPPPYDIKAYYGRSVDFRDPFEKERYREWERKYREWYEKYYKGYAVGA   850
 851  QPRPSANREDFSPERLLPLNIRNSPFTRGRREDYAAGQSHRNRNLGGNYP   900
 901  EKLSTRDSHNAKDNPKSKEKESENVPGDGKGNKHKKHRKRRKGEESESFL   950
 951  NPELLETSRKCRESSGIDETKTDTLFVLPSRDDATPVRDEPMDAESITFK  1000
1001  SVSDKDKREKDKPKVKSDKTKRKSDGSATAKKDNVLKPSKGPQEKVDGDR  1050
1051  EKSPRSEPPLKKAKEEATKIDSVKPSSSSQKDEKVTGTPRKAHSKSAKEH  1100
1101  QEAKPAKDEKVKKDCSKDIKSEKPASKDEKAKKPEKNKLLDSKGEKRKRK  1150
1151  TEEKSVDKDFESSSMKISKVEGTEIVKPSPKRKMEGDVEKLERTPEKDKI  1200
1201  ASSTTPAKKIKLNRETGKKIGNAENASTTKEPSEKLESTSSKIKQEKVKG  1250
1251  KAKRKVAGSEGSSSTLVDYTSTSSTGGSPVRKSEEKTDTKRTVIKTMEEY  1300
1301  NNDNTAPAEDVIIMIQVPQSKWDKDDFESEEEDVKTTQPIQSVGKPSSII  1350
1351  KNVTTKPSATAKYTEKESEQPEKLQKLPKEASHELMQHELRSSKGSASSE  1400
1401  KGRAKDREHSGSEKDNPDKRKSGAQPDKESTVDRLSEQGHFKTLSQSSKE  1450
1451  TRTSEKHESVRGSSNKDFTPGRDKKVDYDSRDYSSSKRRDERGELARRKD  1500
1501  SPPRGKESLSGQKSKLREERDLPKKGAESKKSNSSPPRDKKPHDHKAPYE  1550
1551  TKRPCEETKPVDKNSGKEREKHAAEARNGKESSGGKLPCIPNPPDPPMEK  1600
1601  ELAAGQVEKSAVKPKPQLSHSSRLSSDLTRETDEAAFEPDYNESDSESNV  1650
1651  SVKEEEAVASISKDLKEKTTEKAKESLTVATASQPGADRSQSQSSPSVSP  1700
1701  SRSHSPSGSQTRSHSSSASSAGSQDSKKKKKKKEKKKHKKHKKHKKHKKH  1750
1751  AGADGDVEKSQKHKHKKKKAKKNKDKEKEKDDQKVRSVTV            1790
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold.  Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus.  Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them).  The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation).  Another benchmark is available in the Bioinformatics 2007 paper. | 
| NucPred score threshold |  Specificity |  Sensitivity | 
 | see above |  fraction of proteins predicted to be nuclear that actually are nuclear |  fraction of true nuclear proteins that are predicted (coverage) | 
 | 0.10 |  0.45 |  0.88 | 
 | 0.20 |  0.52 |  0.83 | 
 | 0.30 |  0.57 |  0.77 | 
 | 0.40 |  0.63 |  0.69 | 
 | 0.50 |  0.70 |  0.62 | 
 | 0.60 |  0.71 |  0.53 | 
 | 0.70 |  0.81 |  0.44 | 
 | 0.80 |  0.84 |  0.32 | 
 | 0.90 |  0.88 |  0.21 | 
 | 1.00 |  1.00 |  0.02 | 
| Sequences which score >= 0.8 with NucPred and which
                are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%.  (PredictNLS by itself is 87% correct with 26% coverage on the same data.) | 
Go back to the NucPred Home Page.