 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching P97924 from www.uniprot.org...
The NucPred score for your sequence is 0.96 (see score help below)
1 MVLSGSFRNDGLKASDVLPILKEKVAFVSGGRDKRGGPILTFPARTNHDR 50
51 IRQEDLRKLVTNLASVPSEDVCKRGFTVIIDMRGSKWDLIKPLLKTLQEA 100
101 FPAEIHVALIIKPDNFWQKQKTNFGSSKFIFETSMVSVEGLTKLVDPSQL 150
151 TEEFDGSLDYNHEEWIELRLSLEEFFNSAVHLLSRLEDLQEMLARKEFPV 200
201 DVEGSRRLIDEHTQLKKKVLKAPVEELDREGQRLLQCIRCSDGFSGRNCI 250
251 PGSADFQSLVPKITSLLDKLHSTRQHLHQMWHVRKLKLDQCFQLRLFEQD 300
301 AEKMFDWISHNKELFLQSHTEIGVSYQHALDLQTQHNHFAMNSMNAYVNI 350
351 NRIMSVASRLSEAGHYASQQIKQISTQLDQEWKSFAAALDERSTILAMSA 400
401 VFHQKAEQFLSGVDAWCKMCSEGGLPSEMQDLELAIHHHQSLYEQVTQAY 450
451 TEVSQDGKALLDVLQRPLSPGNSESLTATANYSKAVHQVLDVVHEVLHHQ 500
501 RRLESIWQHRKVRLHQRLQLCVFQQDVQQVLDWIENHGEAFLSKHTGVGK 550
551 SLHRARALQKRHDDFEEVAQNTYTNADKLLEAAEQLAQTGECDPEEIYKA 600
601 ARHLEVRIQDFVRRVEQRKLLLDMSVSFHTHTKELWTWMEDLQKEVLEDV 650
651 CADSVDAVQELIKQFQQQQTATLDATLNVIKEGEDLIQQLRSAPPSLGEP 700
701 TEARDSAVSNNKTPHSSSISHIESVLQQLDDAQVQMEELFHERKIKLDIF 750
751 LQLRIFEQYTIEVTAELDAWNEDLLRQMNDFNTEDLTLAEQRLQRHTERK 800
801 LAMNNMTFEVIQQGQDLHQYIMEVQASGIELICEKDVDLAAQVQELLEFL 850
851 HEKQHELELNAEQTHKRLEQCLQLRHLQAEVKQVLGWIRNGESMLNASLV 900
901 NASSLSEAEQLQREHEQFQLAIEKTHQSALQVQQKAEALLQAGHYDADAI 950
951 RECAEKVALHWQQLMLKMEDRLKLVNASVAFYKTSEQVCSVLESLEQEYR 1000
1001 RDEDWCGGRDKLGPAAEMDHVIPLLSKHLEQKEAFLKACTLARRNAEVFL 1050
1051 KYIHRNNVSMPSVASHTRGPEQQVKAILSELLQRENRVLHFWTLKKRRLD 1100
1101 QCQQYVVFERSAKQALDWIQETGEYYLSTHTSTGETTEETQELLKEYGEF 1150
1151 RVPAKQTKEKVKLLIQLADSFVEKGHIHATEIRKWVTTVDKHYRDFSLRM 1200
1201 GKYRYTLEKALGVNTEDNKDLELDIIPASLSDREVKLRDANHEVNEEKRK 1250
1251 SARKKEFIMAELLQTEKAYVRDLHECLETYLWEMTSGVEEIPPGILNKEH 1300
1301 IIFGNIQEIYDFHNNIFLKELEKYEQLPEDVGHCFVTWADKFQMYVTYCK 1350
1351 NKPDSNQLILEHAGTFFDEIQQRHGLANSISSYLIKPVQRVTKYQLLLKE 1400
1401 LLTCCEEGKGELKDGLEVMLSVPKKANDAMHVSMLEGFDENLDVQGELIL 1450
1451 QDAFQVWDPKSLIRKGRERHLFLFEISLVFSKEIKDSSGHTKYVYKNKLL 1500
1501 TSELGVTEHVEGDPCKFALWSGRTPSSDNKTVLKASNIETKQEWIKNIRE 1550
1551 VIQERIIHLKGALKEPIQLPKTPAKLRNNSKRDGVEDGDSQGDGSSQPDT 1600
1601 ISIASRTSQNTVESDKLSGGCELTVVLQDFSAAHSSELSIQVGQTVELLE 1650
1651 RPSERPGWCLVRTTERSPPQEGLVPSSTLCISHSRSSVEMDCFFPLVKDS 1700
1701 YSHSSGENGGKSESVANLQSQPSLNSIHSSPGPKRSTNTLKKWLTSPVRR 1750
1751 LNSGKADGNIKKQKKVRDGRKSFDLGSPKPGDETTPQGDSADEKSKKGWG 1800
1801 EDEPDEESHTPLPPPMKIFDNDPTQDEMSSLLAARQAPTDVPTAADLVSA 1850
1851 IEKLVKSKLTLEGGSYRGSLKDPTVCLNEGMAPPTPPRNLEEEQKAKALR 1900
1901 GRMFVLNELVQTEKDYVKDLGIVVEGFMKRIEEKGVPEDMRGKEKIVFGN 1950
1951 IHQIYDWHKDFFLAELEKCIQEQDRLAQLFIKHERKLHIYVWYCQNKPRS 2000
2001 EYIVAEYDAYFEEVKQEINQRLTLSDFLIKPIQRITKYQLLLKDFLRYSE 2050
2051 KAGLECSDIEKAVELMCLVPKRCNDMMNLGRLQGFEGTLTAQGKLLQQDT 2100
2101 FYVIELDAGMQSRTKERRVFLFEQIVIFSELLRKGSLTPGYMFKRSIKMN 2150
2151 YLVLEEDVDDDPCKFALMNRETSERVILQAANSDIQQAWVQDINQVLETQ 2200
2201 RDFLNALQSPIEYQRKERSTAVIRSQPPRVPQASPRPYSSVPVGSEKPPK 2250
2251 GSSYNPPLPPLKISTSNGSPGFDYHQPGDKFDASKQNDLGGCNGTSTMAV 2300
2301 IKDYYALKENEICVSQGEVVQVLAVNQQNMCLVYQPASDHSPAAEGWVPG 2350
2351 SILAPLTKATAPAESSDESIKKSCSWHTLRMRKRADVENTGKNEATGPRK 2400
2401 PKDILGNKASVKETNSSEESECDDLDPNTSMEILNPNFIQEVAPEFLVPL 2450
2451 VDVTCLLGDTVLLQCKACGRPKPTITWKGPDQNILDTDNSSATYTISSCD 2500
2501 SGESTLKICNLMPQDSGIYTCIATNDHGTASTSATVKVQGVPAAPNRPIA 2550
2551 QERSCTSVILRWLPPASTGNCTISGYTVEYREEGSQVWQQSVASTLDTYL 2600
2601 VIEDLSPGCPYQFRVSASNPWGISLPSEPSEFVHLPEYDAAADGATISWK 2650
2651 ENFDSAYTELNEIGRGRFSIVKKCIHKATRKDVAVKFVSKKMKKKEQAAH 2700
2701 EAALLQHLQHPQYVTLHDTYESPTSYILILELMDDGRLLDYLMNHDELME 2750
2751 EKVAFYIRDIMEALQYLHNCRVAHLDIKPENLLIDLRIPVPRVKLIDLED 2800
2801 AVQISGHFHIHHLLGNPEFAAPEVIQGIPVSLGTDIWSIGVLTYVMLSGV 2850
2851 SPFLDESKEETCINVCRVDFSFPHEYFCGVSNAARDFINVILQEDFRRRP 2900
2901 TAATCLQHPWLQPHNGSYSKIPLDTSRLACFIERRKHQNDVRPIPNVKSY 2950
2951 IVNRVNQGT 2959
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.