SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q00083 from www.uniprot.org...

The NucPred score for your sequence is 0.99 (see score help below)

   1  MEDSQRGNASMMSMMDDPFVVSPEGARDPPSTNQYSTFDAQLFNLDASTP    50
51 AQAKRALEAHLAETERRLEEASKLGTALVEQRKDLEDKLREVEQQQEEGQ 100
101 IGEELRRKLADLEREYNEIGQETARAFLAPKRLAGGDDGHLGTPSMDQKS 150
151 PLHSALFAGQATNSPSKVSVPSRKSRNQSNRVHDIEFATEISTSLLAQVR 200
201 QLQSLLAEREETLKTVNLEKSRLELEAEGYAQRIRALDESEERYKDENWA 250
251 LETKIHELMAAVKDVTDRETKLTSSLGAATAEKSAMERELEDLKQANAKL 300
301 IEDHTAAQKANDAEINTLRRNLSAGDAERLTLQRKLEDMNTQNQELAKAV 350
351 AMRLRQQEAESTREVVRPHDSEDEEQATPENSPPPSPNKFTPRHNHLETE 400
401 TLRSSLGHAHRMIQNLRSTIHREKTEKIELKRMLQEARDEVEQRRRDSVA 450
451 ANGPTNKRQKTKAETRKPARPDLLGAGRKKAEVEIHDSDWESNAGDISPT 500
501 HKASNDSRDRRGDQPIDDRSDAYHTATEADDPFETANERETTTESEAFQT 550
551 GVESMAGDSTDSDELTETEDRVQRTPRGRVSSMTLAKARDRTSYYSTAST 600
601 SADEGDSTDPGTPSISQFSTPRYRLRKKRSVLRKIRPSGEAPMAFNSRPS 650
651 SARESPSTSFTRDTSAAPEGQSLFAELAEVDGDEDDFGPPMQFEAASPST 700
701 PRMLPGFDSRRPSAVTVELPSKPDMVDSGVMTDPWEPNLHLASQTDDETV 750
751 ISVPVTPDKPTMSDASTGMDVVESPSLVHSSTQWTPLKPNAETSDDHVLS 800
801 VPTPPKMAWDGQTLNEERKVDIPDSPTTQRELNISSVSFEETEPVAPSFP 850
851 ELRTAFFVGSTTEPVAAPVPVPPEVALSPISSQTTQPTEPVIPAPPEPEP 900
901 IYVPEMAFSQILVEDTLPILAKLPEPAPERVFAEQGTSTDIAELSVSAIS 950
951 SEQTEPVEPVYEPKQDVAIVAEAVPEGPLSFVEQGTNTDDVEISFPAISS 1000
1001 VETEPVAPVRETKDDVPEPVLSLTEQGTSTDTVEFSVSSISSEETEPVEP 1050
1051 IREAKEEAAAVDDVASESTHPVLSIFLTPPAYTEPTAPKLQEAVIPPAPQ 1100
1101 LALSTVSSVETPPVQYTPDVLILPTPPALDENTPPSVMASTAKATKSAPP 1150
1151 LVVVDDNTDKGTADGLVTQQNGVTLPLGAISGNAAPRRARSGSSNQADQG 1200
1201 AQTILSSKQIDQLLIDRASVRPLSPPDSDKLNEMSNSPFATPKARSRPVP 1250
1251 QASNASLHKRPGSAASQASSVQIHPPLPADHKEAIMAAEKKSIDQRPASA 1300
1301 GLMGPPLAPASAVRASSQQRPRTPNESALQVGSAKTTTSRASVRRDSHMS 1350
1351 RRSSVSSFASELEERFNMQPNPPFAPQGYSTGTDPRMIQAITQTMIGEFL 1400
1401 WKYTRRAVSGEISNTRHRRYFWVHPYTRTLYWSEHDPQSAGKSEGRTKSV 1450
1451 SIEAVRVVADDNPYPPGLHCKSLEVVSPGRRIRFTATTSQRHETWFNALS 1500
1501 YLLVRNGPEDEEAENGVTLDDIDEFNPGFRSRSRQTARMSVSSSQSRGTR 1550
1551 GLPKQRSGSAMSLRPSVTPGRASPYPPSHYSDQARQASSSRLSTIFNSTI 1600
1601 KGSFGRKGPYAASSLNEDSIHNHDDSVEDLRHMMDRGDDVDRLENVRACC 1650
1651 DGKHDVSSLSRTSRYSPRANRIHSHH 1676

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.