 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q00799 from www.uniprot.org...
The NucPred score for your sequence is 0.91 (see score help below)
1 MEKNVLWVIFYNFLVILLASCNDSNRSKSNSLKSESKSLPTYANLMRNGQ 50
51 DKYNNAKTEDNIGNQINNDNNHNGYNDNRINSEYPKTSHLQHSPSLVHLN 100
101 DHKFTTKPSRHSYVQRNSIYKRNTNNNMENTNNELHVVPNFFIQEKKAAP 150
151 QKPSVQNTPTATQIVYNNLDYLNAFDDTNNIISAFKPHHPIIYYFKQLEH 200
201 FANSYYDLRNKIKDYFALPMKQASDVVEKNVKDCLQNINESRILMTQLEN 250
251 PQNYNDISDKYDEKVKEYKKKIEDMQICLKDSYIKNFKAIMSANLKMNLA 300
301 LNGIYIHWWYLTCSTKTYDDIVKEYAIEINDFDEKKSISFMDNMKKIHKS 350
351 AIDTLKKMKAELNTSLDSKRTEFIIGEIGHMIEKFNLHLTKIRYASAFIK 400
401 SIPLQKVESDIYRVELKTLFYVAAKHYADFKFSLEHLKMFENLSKSKEKM 450
451 LYSTFEKLEGDLLNKINTLMGSEQSTSDLTSIIADSEKIIKSAESLINSS 500
501 SEEIAKYALDSNEKINEIKKNYDQNILKVREFINKSNGLITSVKGTSQLS 550
551 ESDKQQIETKIEEIKKKKKDILERGKEFINIMNEIKKKKKSNSSNSSTNS 600
601 KEFTDKLKELETEFEGLNKTVKGYLQEIEDIKVKENEDRSLKNQIEQHLK 650
651 YTSDNRDNVKTLISKNDEIQKYIEKIEKLINDAPSGKDKFTTEKTNLQNK 700
701 VKKIIDEFHKEDLQLLLNSLSKFYEEHQKLYNEASTIEKIKDLHQKTKEE 750
751 YEKLEKMKFSNFGQILDKLNTELDNLKTLEKNIVEEQTNYINKVMSDSLT 800
801 NLTAEVDNLRSALDGYRADETELKTYKNRINERKEKFLSTLKEQEDDIPD 850
851 GKNIYEEYNNHKNVMVNKEHKISSDINQCNENIIKAEKNLETFNTLVQTL 900
901 DAHTGKKDQKVHDLLQKFKTNLEKLNLNELESGFKSLNGSASTTNKQIEN 950
951 IRKNIDTIKSLNFAKNSSESSKLSLENIIKNKADLIKKLDQHTQEIEKHT 1000
1001 FIENEEMSPLLSVIKKEKNRVESDMSEELIKQLNTKINAILEYYNKSKDR 1050
1051 FNGDDETNLEELDDFKKQCQDAQQEIKKLTTNYNVLDNGINVIIKEQHEK 1100
1101 VIILSENHITEKDKKINEKIQQNVNSLNEMKTKLGLLKINEDIKNSRDTT 1150
1151 IKSKIQEFEKKVQTIFGSIDVANKKIDAIKKEHDVNKDEFDKEKVKDTSF 1200
1201 DEKKKSIEKAYEKMGNTLKELEKMDDEKNIEKEVEEAQIQYKRIFIDHDV 1250
1251 NLMNDEVEKSKIVMEKIELYKKEIDEIKQKTNEYKQGDTSNFYYTEQYNS 1300
1301 ATQSKAKIEQFINIATTKKGTSDTSQDINELESIKEEVHKNLQLVKQESN 1350
1351 SMEEMRKQILSMKDLLILNNSETIAKEISNNTQNALGFRENAKTKLNKTD 1400
1401 ELLQRVAAMIEEAKAHKNNIDIALEDAQIDTEVSKIEQINREIMNKKDEI 1450
1451 KSYLSEIKEYKDKCTTEISNSKRGKDKIEFLEKFKPNEESNSNKVNINEI 1500
1501 NENIRNSEQYLKDIEDAEKQASTKVELFHKHETTISNIFKESEILGVETK 1550
1551 SQKKINKAEDIMKEIERHNSEIQTQVKGFQENLNKLNEPHNYDNAEDELN 1600
1601 NDKSTNAKVLIETNLESVKHNLSEITNIKQGGEKIYSKAKDIMQKIKATS 1650
1651 ENTAEKTLEKVKDDQSNYVNYLNQITTERNLIVTEKNRLNGIDSTITNIE 1700
1701 GALKESKGNYEIGFLEKLEEIGKNRKLKVDITKKSINSTVGNFSSLFNNF 1750
1751 DLNQYDFNKNINDYENKMGEIYNEFEGSLNKISENLRNASENTSDYNSAK 1800
1801 TLRLEAQKEKVNLLNKEEEANKYLRDVKKVESFRFIFNMKESLDKINEMI 1850
1851 KKEQLTVNEGHGNVKQLVENIKELVDENNLSDILKQATGKNEEIQKITHS 1900
1901 TLKNKAKTILGHVDTSAKYVGIKITPELALTELLGDAKLKTAQELKFESK 1950
1951 NNVVLETENMSKNTNELDVHKNIQDAYKVALEILAHSDEIDTKQKDSSKL 2000
2001 IEMGNQIYLKVVLINQYKNKISSIKSKEEAVSVKIGNVSKKHSELSKITC 2050
2051 SDKSYDNIIALEKQTELQNLRNSFTQEKTNTNSDSKLEKIKTDFESLKNA 2100
2101 LKTLEGEVNALKASSDNHEHVQSKSEPVNPALSEIEKEETDIDSLNTALD 2150
2151 ELLKKGRTCEVSRYKLIKDTVTKEISDDTELINTIEKNVKAYLAYIKKNY 2200
2201 EDTVQDVLTLNEHFNTKQVSNHEPTNFDKSNKSSEELTKAVTDSKTIISK 2250
2251 LKGVIIEVNENTEMNTIESSAKEIEALYNELKNKKTSLNEIYQTSNEVKL 2300
2301 QEMKSNADKYIDVSKIFNTVLDTQKSNIVTNQHSINNVKDKLKGKLQELI 2350
2351 DADSSFTLESIKKFNEIYSHIKTNIGELEQLQQTNKSEHDNVAKHKEKIV 2400
2401 HLINRVESLKGDVKNHDDDQYMKKLNASLLNDNIKNTNSINISDEELKKL 2450
2451 LKKVEENDQLCKNNNTQNFISDIMKRVEDLNRRFTENLPEKEKLHQIENN 2500
2501 YNEISSIFSEINLQDVDEFVAKIHKQIDAEKASVNNVREAEKIRTAIQNV 2550
2551 TSYDTEIISRLSEMNNVLERITTRKTKMDQLLKSLSPDNTSLNLNARTHV 2600
2601 RKSEDIIKQLNSHIGEITELNTYAHEVMTYLENELNKLLKQLEIERAKLE 2650
2651 TKTSPSGMKAKEEKVPPKETENRAQDNLASVPQKTLEDNTQQMPENSVQD 2700
2701 NLASVPQKTLEDNTHQMPENRVQEDSISAPQEQVEYSTLAVPENDETTEE 2750
2751 ESEHDDAHDDTHDDTHDDTHDDTHDDTHDDTHDDTHDESQTGRDSTAKEA 2800
2801 IGKTRLAGAVIIAMSVLSGFIIIVFKDKDEEEKDHNEHGYNEAFGEHDEY 2850
2851 NMHDKEEVIEVCFNEED 2867
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.