 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q00959 from www.uniprot.org...
The NucPred score for your sequence is 0.63 (see score help below)
1 MGRLGYWTLLVLPALLVWRDPAQNAAAEKGPPALNIAVLLGHSHDVTERE 50
51 LRNLWGPEQATGLPLDVNVVALLMNRTDPKSLITHVCDLMSGARIHGLVF 100
101 GDDTDQEAVAQMLDFISSQTFIPILGIHGGASMIMADKDPTSTFFQFGAS 150
151 IQQQATVMLKIMQDYDWHVFSLVTTIFPGYRDFISFIKTTVDNSFVGWDM 200
201 QNVITLDTSFEDAKTQVQLKKIHSSVILLYCSKDEAVLILSEARSLGLTG 250
251 YDFFWIVPSLVSGNTELIPKEFPSGLISVSYDDWDYSLEARVRDGLGILT 300
301 TAASSMLEKFSYIPEAKASCYGQAEKPETPLHTLHQFMVNVTWDGKDLSF 350
351 TEEGYQVHPRLVVIVLNKDREWEKVGKWENQTLSLRHAVWPRYKSFSDCE 400
401 PDDNHLSIVTLEEAPFVIVEDIDPLTETCVRNTVPCRKFVKINNSTNEGM 450
451 NVKKCCKGFCIDILKKLSRTVKFTYDLYLVTNGKHGKKVNNVWNGMIGEV 500
501 VYQRAVMAVGSLTINEERSEVVDFSVPFVETGISVMVSRSNGTVSPSAFL 550
551 EPFSASVWVMMFVMLLIVSAIAVFVFEYFSPVGYNRNLAKGKAPHGPSFT 600
601 IGKAIWLLWGLVFNNSVPVQNPKGTTSKIMVSVWAFFAVIFLASYTANLA 650
651 AFMIQEEFVDQVTGLSDKKFQRPHDYSPPFRFGTVPNGSTERNIRNNYPY 700
701 MHQYMTRFNQRGVEDALVSLKTGKLDAFIYDAAVLNYKAGRDEGCKLVTI 750
751 GSGYIFASTGYGIALQKGSPWKRQIDLALLQFVGDGEMEELETLWLTGIC 800
801 HNEKNEVMSSQLDIDNMAGVFYMLAAAMALSLITFIWEHLFYWKLRFCFT 850
851 GVCSDRPGLLFSISRGIYSCIHGVHIEEKKKSPDFNLTGSQSNMLKLLRS 900
901 AKNISNMSNMNSSRMDSPKRATDFIQRGSLIVDMVSDKGNLIYSDNRSFQ 950
951 GKDSIFGDNMNELQTFVANRHKDNLSNYVFQGQHPLTLNESNPNTVEVAV 1000
1001 STESKGNSRPRQLWKKSMESLRQDSLNQNPVSQRDEKTAENRTHSLKSPR 1050
1051 YLPEEVAHSDISETSSRATCHREPDNNKNHKTKDNFKRSMASKYPKDCSD 1100
1101 VDRTYMKTKASSPRDKIYTIDGEKEPSFHLDPPQFVENITLPENVGFPDT 1150
1151 YQDHNENFRKGDSTLPMNRNPLHNEDGLPNNDQYKLYAKHFTLKDKGSPH 1200
1201 SEGSDRYRQNSTHCRSCLSNLPTYSGHFTMRSPFKCDACLRMGNLYDIDE 1250
1251 DQMLQETGNPATREEVYQQDWSQNNALQFQKNKLRINRQHSYDNILDKPR 1300
1301 EIDLSRPSRSISLKDRERLLEGNLYGSLFSVPSSKLLGNKSSLFPQGLED 1350
1351 SKRSKSLLPDHASDNPFLHTYGDDQRLVIGRCPSDPYKHSLPSQAVNDSY 1400
1401 LRSSLRSTASYCSRDSRGHSDVYISEHVMPYAANKNTMYSTPRVLNSCSN 1450
1451 RRVYKKMPSIESDV 1464
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.