| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q01371 from www.uniprot.org...
The NucPred score for your sequence is 0.96 (see score help below)
1 MNNNYYGSPLSPEELQHQMHQHQQQQQQQQQQQQQQQQQQQQQQQQQQQQ 50
51 HQHQQQQKTNQHRNAGMMNTPPTTNQGNSTIHASDVTMSGGSDSLDEIIQ 100
101 QNLDEMHRRRSVPQPYGGQTRRLSMFDYANPNDGFSDYQLDNMSGNYGDM 150
151 TGGMGMSGHSSPYAGQNIMAMSDHSGGYSHMSPNVMGNMMTYPNLNMYHS 200
201 PPIENPYSSAGLDTIRTDFSMDMNMDSGSVSAASVHPTPGLNKQDDEMMT 250
251 MEQGFGGGDDANASHQAQQNMGGLTPAMTPAMTPAMTPGVSNFAQGMATP 300
301 VSQDAASTPATTFQSPSLSATTQTIRIGPPPPPSVTNAPTPAPFTSTPSG 350
351 GGASQTKSIYSKSGFDMLRALWYVASRKDPKLKLGAVDMSCAFVVCDVTL 400
401 NDCPIIYVSDNFQNLTGYSRHEIVGRNCRFLQAPDGNVEAGTKREFVENN 450
451 AVYTLKKTIAEGQEIQQSLINYRKGGKPFLNLLTMIPIPWDTEEIRYFIG 500
501 FQIDLVECPDAIIGQEGNGPMQVNYTHSDIGQYIWTPPTQKQLEPADGQT 550
551 LGVDDVSTLLQQCNSKGVASDWHKQSWDKMLLENADDVVHVLSLKGLFLY 600
601 LSPACKKVLEYDASDLVGTSLSSICHPSDIVPVTRELKEAQQHTPVNIVF 650
651 RIRRKNSGYTWFESHGTLFNEQGKGRKCIILVGRKRPVFALHRKDLELNG 700
701 GIGDSEIWTKVSTSGMFLFVSSNVRSLLDLLPENLQGTSMQDLMRKESRA 750
751 EFGRTIEKARKGKIASCKHEVQNKRGQVLQAYTTFYPGDGGEGQRPTFLL 800
801 AQTKLLKASSRTLAPATVTVKNMSPGGVPLSPMKGIQTDSDSNTLMGGMS 850
851 KSGSSDSTGAMVSARSSAGPGQDAALDADNIFDELKTTRCTSWQYELRQM 900
901 EKVNRMLAEELAQLLSNKKKRKRRKGGGNMVRDCANCHTRNTPEWRRGPS 950
951 GNRDLCNSCGLRWAKQTGRVSPRTSSRGGNGDSMSKKSNSPSHSSPLHRE 1000
1001 VGNDSPSTTTATKNSPSLRGSSTTAPGTITTDSGPAVASSASGTGSTTIA 1050
1051 TSANSAASTVNALGPPATGPSGGSPAQHLPPHLQGTHLNAQAMQRVHQHK 1100
1101 QHQQHQQQHQQQHQQQHQQQHQQLQQHQFNPPQSQPLLEGGSGFRGSGME 1150
1151 MTSIREEMGEHQQGLSV 1167
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.