| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q01484 from www.uniprot.org...
The NucPred score for your sequence is 0.95 (see score help below)
1 MMNEDAAQKSDSGEKFNGSSQRRKRPKKSDSNASFLRAARAGNLDKVVEY 50
51 LKGGIDINTCNQNGLNALHLAAKEGHVGLVQELLGRGSSVDSATKKGNTA 100
101 LHIASLAGQAEVVKVLVKEGANINAQSQNGFTPLYMAAQENHIDVVKYLL 150
151 ENGANQSTATEDGFTPLAVALQQGHNQAVAILLENDTKGKVRLPALHIAA 200
201 RKDDTKSAALLLQNDHNADVQSKMMVNRTTESGFTPLHIAAHYGNVNVAT 250
251 LLLNRGAAVDFTARNGITPLHVASKRGNTNMVKLLLDRGGQIDAKTRDGL 300
301 TPLHCAARSGHDQVVELLLERGAPLLARTKNGLSPLHMAAQGDHVECVKH 350
351 LLQHKAPVDDVTLDYLTALHVAAHCGHYRVTKLLLDKRANPNARALNGFT 400
401 PLHIACKKNRIKVMELLVKYGASIQAITESGLTPIHVAAFMGHLNIVLLL 450
451 LQNGASPDVTNIRGETALHMAARAGQVEVVRCLLRNGALVDARAREEQTP 500
501 LHIASRLGKTEIVQLLLQHMAHPDAATTNGYTPLHISAREGQVDVASVLL 550
551 EAGAAHSLATKKGFTPLHVAAKYGSLDVAKLLLQRRAAADSAGKNGLTPL 600
601 HVAAHYDNQKVALLLLEKGASPHATAKNGYTPLHIAAKKNQMQIASTLLN 650
651 YGAETNIVTKQGVTPLHLASQEGHTDMVTLLLDKGANIHMSTKSGLTSLH 700
701 LAAQEDKVNVADILTKHGADQDAHTKLGYTPLIVACHYGNVKMVNFLLKQ 750
751 GANVNAKTKNGYTPLHQAAQQGHTHIINVLLQHGAKPNATTANGNTALAI 800
801 AKRLGYISVVDTLKVVTEEVTTTTTTITEKHKLNVPETMTEVLDVSDEEG 850
851 DDTMTGDGGEYLRPEDLKELGDDSLPSSQFLDGMNYLRYSLEGGRSDSLR 900
901 SFSSDRSHTLSHASYLRDSAVMDDSVVIPSHQVSTLAKEAERNSYRLSWG 950
951 TENLDNVALSSSPIHSGFLVSFMVDARGGAMRGCRHNGLRIIIPPRKCTA 1000
1001 PTRVTCRLVKRHRLATMPPMVEGEGLASRLIEVGPSGAQFLGKLHLPTAP 1050
1051 PPLNEGESLVSRILQLGPPGTKFLGPVIVEIPHFAALRGKERELVVLRSE 1100
1101 NGDSWKEHFCDYTEDELNEILNGMDEVLDSPEDLEKKRICRIITRDFPQY 1150
1151 FAVVSRIKQDSNLIGPEGGVLSSTVVPQVQAVFPEGALTKRIRVGLQAQP 1200
1201 MHSELVKKILGNKATFSPIVTLEPRRRKFHKPITMTIPVPKASSDVMLNG 1250
1251 FGGDAPTLRLLCSITGGTTPAQWEDITGTTPLTFVNECVSFTTNVSARFW 1300
1301 LIDCRQIQESVTFASQVYREIICVPYMAKFVVFAKSHDPIEARLRCFCMT 1350
1351 DDKVDKTLEQQENFAEVARSRDVEVLEGKPIYVDCFGNLVPLTKSGQHHI 1400
1401 FSFFAFKENRLPLFVKVRDTTQEPCGRLSFMKEPKSTRGLVHQAICNLNI 1450
1451 TLPIYTKESESDQEQEEEIDMTSEKNDETESTETSVLKSHLVNEVPVLAS 1500
1501 PDLLSEVSEMKQDLIKMTAILTTDVSDKAGSIKVKELVKAAEEEPGEPFE 1550
1551 IVERVKEDLEKVNEILRSGTCTRDESSVQSSRSERGLVEEEWVIVSDEEI 1600
1601 EEARQKAPLEITEYPCVEVRIDKEIKGKVEKDSTGLVNYLTDDLNTCVPL 1650
1651 PKEQLQTVQDKAGKKCEALAVGRSSEKEGKDIPPDETQSTQKQHKPSLGI 1700
1701 KKPVRRKLKEKQKQKEEGLQASAEKAELKKGSSEESLGEDPGLAPEPLPT 1750
1751 VKATSPLIEETPIGSIKDKVKALQKRVEDEQKGRSKLPIRVKGKEDVPKK 1800
1801 TTHRPHPAASPSLKSERHAPGSPSPKTERHSTLSSSAKTERHPPVSPSSK 1850
1851 TEKHSPVSPSAKTERHSPASSSSKTEKHSPVSPSTKTERHSPVSSTKTER 1900
1901 HPPVSPSGKTDKRPPVSPSGRTEKHPPVSPGRTEKRLPVSPSGRTDKHQP 1950
1951 VSTAGKTEKHLPVSPSGKTEKQPPVSPTSKTERIEETMSVRELMKAFQSG 2000
2001 QDPSKHKTGLFEHKSAKQKQPQEKGKVRVEKEKGPILTQREAQKTENQTI 2050
2051 KRGQRLPVTGTAESKRGVRVSSIGVKKEDAAGGKEKVLSHKIPEPVQSVP 2100
2101 EEESHRESEVPKEKMADEQGDMDLQISPDRKTSTDFSEVIKQELEDNDKY 2150
2151 QQFRLSEETEKAQLHLDQVLTSPFNTTFPLDYMKDEFLPALSLQSGALDG 2200
2201 SSESLKNEGVAGSPCGSLMEGTPQISSEESYKHEGLAETPETSPESLSFS 2250
2251 PKKSEEQTGETKESTKTETTTEIRSEKEHPTTKDITGGSEERGATVTEDS 2300
2301 ETSTESFQKEATLGSPKDTSPKRQDDCTGSCSVALAKETPTGLTEEAACD 2350
2351 EGQRTFGSSAHKTQTDSEVQESTATSDETKALPLPEASVKTDTGTESKPQ 2400
2401 GVIRSPQGLELALPSRDSEVLSAVADDSLAVSHKDSLEASPVLEDNSSHK 2450
2451 TPDSLEPSPLKESPCRDSLESSPVEPKMKAGIFPSHFPLPAAVAKTELLT 2500
2501 EVASVRSRLLRDPDGSAEDDSLEQTSLMESSGKSPLSPDTPSSEEVSYEV 2550
2551 TPKTTDVSTPKPAVIHECAEEDDSENGEKKRFTPEEEMFKMVTKIKMFDE 2600
2601 LEQEAKQKRDYKKEPKQEESSSSSDPDADCSVDVDEPKHTGSGEDESGVP 2650
2651 VLVTSESRKVSSSSESEPELAQLKKGADSGLLPEPVIRVQPPSPLPSSMD 2700
2701 SNSSPEEVQFQPVVSKQYTFKMNEDTQEEPGKSEEEKDSESHLAEDRHAV 2750
2751 STEAEDRSYDKLNRDTDQPKICDGHGCEAMSPSSSAAPVSSGLQSPTGDD 2800
2801 VDEQPVIYKESLALQGTHEKDTEGEELDVSRAESPQADCPSESFSSSSSL 2850
2851 PHCLVSEGKELDEDISATSSIQKTEVTKTDETFENLPKDCPSQDSSITTQ 2900
2901 TDRFSMDVPVSDLAENDEIYDPQITSPYENVPSQSFFSSEESKTQTDANH 2950
2951 TTSFHSSEVYSVTITSPVEDVVVASSSSGTVLSKESNFEGQDIKMESQQE 3000
3001 STLWEMQSDSVSSSFEPTMSATTTVVGEQISKVIITKTDVDSDSWSEIRE 3050
3051 DDEAFEARVKEEEQKIFGLMVDRQSQGTTPDTTPARTPTEEGTPTSEQNP 3100
3101 FLFQEGKLFEMTRSGAIDMTKRSYADESFHFFQIGQESREETLSEDVKEG 3150
3151 ATGADPLPLETSAESLALSESKETVDDEADLLPDDVSEEVEEIPASDAQL 3200
3201 NSQMGISASTETPTKEAVSVGTKDLPTVQTGDIPPLSGVKQISCPDSSEP 3250
3251 AVQVQLDFSTLTRSVYSDRGDDSPDSSPEEQKSVIEIPTAPMENVPFTES 3300
3301 KSKIPVRTMPTSTPAPPSAEYESSVSEDFLSSVDEENKADEAKPKSKLPV 3350
3351 KVPLQRVEQQLSDLDTSVQKTVAPQGQDMASIAPDNRSKSESDASSLDSK 3400
3401 TKCPVKTRSYTETETESRERAEELELESEEGATRPKILTSRLPVKSRSTT 3450
3451 SSCRGGTSPTKESKEHFFDLYRNSIEFFEEISDEASKLVDRLTQSEREQE 3500
3501 IVSDDESSSALEVSVIENLPPVETEHSVPEDIFDTRPIWDESIETLIERI 3550
3551 PDENGHDHAEDPQDEQERIEERLAYIADHLGFSWTELARELDFTEEQIHQ 3600
3601 IRIENPNSLQDQSHALLKYWLERDGKHATDTNLVECLTKINRMDIVHLME 3650
3651 TNTEPLQERISHSYAEIEQTITLDHSEGFSVLQEELCTAQHKQKEEQAVS 3700
3701 KESETCDHPPIVSEEDISVGYSTFQDGVPKTEGDSSATALFPQTHKEQVQ 3750
3751 QDFSGKMQDLPEESSLEYQQEYFVTTPGTETSETQKAMIVPSSPSKTPEE 3800
3801 VSTPAEEEKLYLQTPTSSERGGSPIIQEPEEPSEHREESSPRKTSLVIVE 3850
3851 SADNQPETCERLDEDAAFEKGDDMPEIPPETVTEEEYIDEHGHTVVKKVT 3900
3901 RKIIRRYVSSEGTEKEEIMVQGMPQEPVNIEEGDGYSKVIKRVVLKSDTE 3950
3951 QSEDNNE 3957
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.