SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q01613 from www.uniprot.org...

The NucPred score for your sequence is 0.93 (see score help below)

   1  MSAFGNTIERWNIKSTGVIAGLGHSERISPVRSMTTLVDSAYSSFSGSSY    50
51 VPEYQNSFQHDGCHYNDEQLSYMDSEYVRAIYNPSLLDKDGVYNDIVSEH 100
101 GSSKVALSGRSSSSLCSDNTTSVHRTSPAKLDNYVTNLDSEKNIYGDPIN 150
151 MKHKQNRPNHKAYGLQRNSPTGINSLQEKENQLYNPSNFMEIKDNYFGRS 200
201 LDVLQADGDIMTQDSYTQNALYFPQNQPDQYRNTQYPGANRMSKEQFKVN 250
251 DVQKSNEENTERDGPYLTKDGQFVQGQYASDVRTSFKNIRRSLKKSASGK 300
301 IVAHDSQGSCWIMKPGKDTPSFNSEGTITDMDYDNREQWDIRKSRLSTRA 350
351 SQSLYYESNEDVSGPPLKAMNSKNEVDQTLSFQKDATVKSIPLLSQQLQQ 400
401 EKCKSHPLSDLNCEKITKASTPMLYHLAGGRHSAFIAPVHNTNPAQQEKL 450
451 KLESKTLERMNNISVLQLSEPRPDNHKLPKNKSLTQLADLHDSVEGGNSG 500
501 NLNSSAEESLMNDYIEKLKVAQKKVLRETSFKRKDLQMSLPCRFKLNPPK 550
551 RPTIDHFRSYSSSSANEESAYLQTKNSADSSYKKDDTEKVAVTRIGGRKR 600
601 ITKEQKKLCYSEPEKLDHLGIQKSNFAWKEEPTFANRREMSDSDISANRI 650
651 KYLESKERTNSSSNLSKTELKQIQHNALVQYMERKTNQRPNSNPQVQMER 700
701 TSLGLPNYNEWSIYSSETSSSDASQKYLRRRSAGASSSYDATVTWNDRFG 750
751 KTSPLGRSAAEKTAGVQRKTFSDQRTLDGSQEHLEGSSPSLSQKTSKSTH 800
801 NEQVSYVNMEFLPSSHSKNHMYNDRLTVPGDGTSAESGRMFVSKSRGKSM 850
851 EEIGTTDIVKLAELSHSSDQLYHIKGPVISSRLENTRTTAASHQDRLLAS 900
901 TQIETGNLPRQTHQESVVGPCRSDLANLGQEAHSWPLRASDVSPGTDNPC 950
951 SSSPSAEVQPGAPEPLHCLQTEDEVFTPASTARNEEPNSTAFSYLLSTGK 1000
1001 PVSQGEATALSFTFLPEQDRLEHPIVSETTPSSESDENVSDAAAEKETTT 1050
1051 TQLPETSNVNKPLGFTVDNQEVEGDGEPMQPEFIDSSKQLELSSLPSSQV 1100
1101 NIMQTAEPYLGDKNIGNEQKTEDLEQKSKNPEEDDLPKVKLKSPEDEILE 1150
1151 ELVKEIVAKDKSLLNCLQPVSVRESAMDLMKSLFPMDVTAAEKSRTRGLL 1200
1201 GKDKGETLKKNNSDLESSSKLPSKITGMLQKRPDGESLDDITLKKMELLS 1250
1251 KIGSKLEDLCEQREFLLSDISKNTTNGNNMQTMVKELCKPNEFERYMMFI 1300
1301 GDLEKVVSLLFSLSTRLTRVENSLSKVDENTDAEEMQSLKERHNLLSSQR 1350
1351 EDAKDLKANLDRREQVVTGILVKYLNEEQLQDYKHFVRLKTSLLIEQKNL 1400
1401 EEKIKVYEEQFESIHNSLPP 1420

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.