 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q01879 from www.uniprot.org...
The NucPred score for your sequence is 0.90 (see score help below)
1 MSSFESDSASDAESAFSDASSDFTPSSSVKSKGKVPLRDSTNTTAQPSAP 50
51 ATGDASDQYQKLSQLEHILKRPDTYIGSVEKTGVEMWSFDAATESMIYKE 100
101 VHIVPGLYKIFDEILVNAADNKIRDPSMRNIKVNIDAENNTISVMNDGKG 150
151 IPIEIHKKEKIYIPELIFGNLLTSSNYDDDEKKVTGGRNGYGAKLCNIFS 200
201 TEFVLETADLNTSQVYKQTWTNNMANLTKPKITKLKSKKEYTKVTFKPDL 250
251 SKFHMEMLDDDILSVLRRRVYDLCGTVKDCNIYLNDKKLSIRNFKSYVEM 300
301 YVNAIRERSPDPVAPEGETRNYSTIVHEVFNDRWEVAFAVSDGSFNQVSF 350
351 VNSIATTSGGTHVKYVSDQIITKLIDALTKKEKGKKKLNIKPQEVRNNMF 400
401 VFINCLIENPAFTSQTKEQLTTRVAQFGGKPSEKIVISDQFIAKILKTSI 450
451 ADKIRTIVNANEDKEMSKADGSRKSRIKNQVKLVDANKAGTKEGYKCTLI 500
501 LTEGDSAMPLAVAGLTVVGRDYYGCFPLRGKLLNVREASIEQVSKNAEIN 550
551 SIKQIMGLQHKKRYTPENIKSLRYGHIMIMTDQDQDGSHIKGLIINFLET 600
601 SFPGLLEIPGFLLEFITPIVKVTITGRGNHRVIPFYNMPEFEKWRETEGT 650
651 TCKWKHKYFKGLGTSLESEGREYFAALDRHMKSFHALQDGDSQYIDMAFS 700
701 KKKADERKDWLQAFRPGTHLDPQIREIPISEFINKELILFSMADNVRSIP 750
751 SILDGFKPGQRKVLYGCFKRNLRSEIKVAQLVGYISEHTGYHHGEGSLAQ 800
801 TIVGLAQNFVGANNLNLLQPIGLFGSRAAGGKDFSAVRYIHTNITDLTRV 850
851 IFNPLDDDLYTYVQDDAQTVEPEAYLPIIPMLLVNGAEGIGTGWSTNIPS 900
901 FNPVDIVANIRRMMNGEEPVDMTPWFKGWEGDLERISPEKYKVSGKIEQV 950
951 DDDTVEITEIPIKTWTNSVKEFLLAGLGNDKPWIKDMEEQHGINIRFVVR 1000
1001 LSKEEMDKSLRMGLLERFKLISSISLSNMVAFDPQGRIKKYSSANEILKD 1050
1051 YYWARLELYQRRKDMMAENFQNQLTRLSEQARFIKLIIEKKLTIANKKRS 1100
1101 EMVDDLKKLKFTRFNKNGKPVHDEPLVEAEELAEEEEEAAGDISQLNLGL 1150
1151 VAPEDESQYKPETTYSQYDYLLGMAIWSLTRERYEKLLRQRDEKQEELNE 1200
1201 LLKKSAKDLWNSDLDDFLVGWEEFLRADIEARNSFGPTAKTSTRKRARKS 1250
1251 TKSEPAQKKTKSSTPKASTPTIKAEATPAQPVVKEETNKQPDLLSFFSKE 1300
1301 PSVAKTVSAAPPKRKTPKSKPKKEIVSLFSDSSDDDITSFSVGDAKPTPK 1350
1351 PSTNNILDELEDLKSSTFTPKVGAAGRRRPKSYALAESDGNESDEDYMSE 1400
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.