SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q02224 from www.uniprot.org...

The NucPred score for your sequence is 0.98 (see score help below)

   1  MAEEGAVAVCVRVRPLNSREESLGETAQVYWKTDNNVIYQVDGSKSFNFD    50
51 RVFHGNETTKNVYEEIAAPIIDSAIQGYNGTIFAYGQTASGKTYTMMGSE 100
101 DHLGVIPRAIHDIFQKIKKFPDREFLLRVSYMEIYNETITDLLCGTQKMK 150
151 PLIIREDVNRNVYVADLTEEVVYTSEMALKWITKGEKSRHYGETKMNQRS 200
201 SRSHTIFRMILESREKGEPSNCEGSVKVSHLNLVDLAGSERAAQTGAAGV 250
251 RLKEGCNINRSLFILGQVIKKLSDGQVGGFINYRDSKLTRILQNSLGGNA 300
301 KTRIICTITPVSFDETLTALQFASTAKYMKNTPYVNEVSTDEALLKRYRK 350
351 EIMDLKKQLEEVSLETRAQAMEKDQLAQLLEEKDLLQKVQNEKIENLTRM 400
401 LVTSSSLTLQQELKAKRKRRVTWCLGKINKMKNSNYADQFNIPTNITTKT 450
451 HKLSINLLREIDESVCSESDVFSNTLDTLSEIEWNPATKLLNQENIESEL 500
501 NSLRADYDNLVLDYEQLRTEKEEMELKLKEKNDLDEFEALERKTKKDQEM 550
551 QLIHEISNLKNLVKHAEVYNQDLENELSSKVELLREKEDQIKKLQEYIDS 600
601 QKLENIKMDLSYSLESIEDPKQMKQTLFDAETVALDAKRESAFLRSENLE 650
651 LKEKMKELATTYKQMENDIQLYQSQLEAKKKMQVDLEKELQSAFNEITKL 700
701 TSLIDGKVPKDLLCNLELEGKITDLQKELNKEVEENEALREEVILLSELK 750
751 SLPSEVERLRKEIQDKSEELHIITSEKDKLFSEVVHKESRVQGLLEEIGK 800
801 TKDDLATTQSNYKSTDQEFQNFKTLHMDFEQKYKMVLEENERMNQEIVNL 850
851 SKEAQKFDSSLGALKTELSYKTQELQEKTREVQERLNEMEQLKEQLENRD 900
901 STLQTVEREKTLITEKLQQTLEEVKTLTQEKDDLKQLQESLQIERDQLKS 950
951 DIHDTVNMNIDTQEQLRNALESLKQHQETINTLKSKISEEVSRNLHMEEN 1000
1001 TGETKDEFQQKMVGIDKKQDLEAKNTQTLTADVKDNEIIEQQRKIFSLIQ 1050
1051 EKNELQQMLESVIAEKEQLKTDLKENIEMTIENQEELRLLGDELKKQQEI 1100
1101 VAQEKNHAIKKEGELSRTCDRLAEVEEKLKEKSQQLQEKQQQLLNVQEEM 1150
1151 SEMQKKINEIENLKNELKNKELTLEHMETERLELAQKLNENYEEVKSITK 1200
1201 ERKVLKELQKSFETERDHLRGYIREIEATGLQTKEELKIAHIHLKEHQET 1250
1251 IDELRRSVSEKTAQIINTQDLEKSHTKLQEEIPVLHEEQELLPNVKEVSE 1300
1301 TQETMNELELLTEQSTTKDSTTLARIEMERLRLNEKFQESQEEIKSLTKE 1350
1351 RDNLKTIKEALEVKHDQLKEHIRETLAKIQESQSKQEQSLNMKEKDNETT 1400
1401 KIVSEMEQFKPKDSALLRIEIEMLGLSKRLQESHDEMKSVAKEKDDLQRL 1450
1451 QEVLQSESDQLKENIKEIVAKHLETEEELKVAHCCLKEQEETINELRVNL 1500
1501 SEKETEISTIQKQLEAINDKLQNKIQEIYEKEEQFNIKQISEVQEKVNEL 1550
1551 KQFKEHRKAKDSALQSIESKMLELTNRLQESQEEIQIMIKEKEEMKRVQE 1600
1601 ALQIERDQLKENTKEIVAKMKESQEKEYQFLKMTAVNETQEKMCEIEHLK 1650
1651 EQFETQKLNLENIETENIRLTQILHENLEEMRSVTKERDDLRSVEETLKV 1700
1701 ERDQLKENLRETITRDLEKQEELKIVHMHLKEHQETIDKLRGIVSEKTNE 1750
1751 ISNMQKDLEHSNDALKAQDLKIQEELRIAHMHLKEQQETIDKLRGIVSEK 1800
1801 TDKLSNMQKDLENSNAKLQEKIQELKANEHQLITLKKDVNETQKKVSEME 1850
1851 QLKKQIKDQSLTLSKLEIENLNLAQKLHENLEEMKSVMKERDNLRRVEET 1900
1901 LKLERDQLKESLQETKARDLEIQQELKTARMLSKEHKETVDKLREKISEK 1950
1951 TIQISDIQKDLDKSKDELQKKIQELQKKELQLLRVKEDVNMSHKKINEME 2000
2001 QLKKQFEAQNLSMQSVRMDNFQLTKKLHESLEEIRIVAKERDELRRIKES 2050
2051 LKMERDQFIATLREMIARDRQNHQVKPEKRLLSDGQQHLTESLREKCSRI 2100
2101 KELLKRYSEMDDHYECLNRLSLDLEKEIEFQKELSMRVKANLSLPYLQTK 2150
2151 HIEKLFTANQRCSMEFHRIMKKLKYVLSYVTKIKEEQHESINKFEMDFID 2200
2201 EVEKQKELLIKIQHLQQDCDVPSRELRDLKLNQNMDLHIEEILKDFSESE 2250
2251 FPSIKTEFQQVLSNRKEMTQFLEEWLNTRFDIEKLKNGIQKENDRICQVN 2300
2301 NFFNNRIIAIMNESTEFEERSATISKEWEQDLKSLKEKNEKLFKNYQTLK 2350
2351 TSLASGAQVNPTTQDNKNPHVTSRATQLTTEKIRELENSLHEAKESAMHK 2400
2401 ESKIIKMQKELEVTNDIIAKLQAKVHESNKCLEKTKETIQVLQDKVALGA 2450
2451 KPYKEEIEDLKMKLVKIDLEKMKNAKEFEKEISATKATVEYQKEVIRLLR 2500
2501 ENLRRSQQAQDTSVISEHTDPQPSNKPLTCGGGSGIVQNTKALILKSEHI 2550
2551 RLEKEISKLKQQNEQLIKQKNELLSNNQHLSNEVKTWKERTLKREAHKQV 2600
2601 TCENSPKSPKVTGTASKKKQITPSQCKERNLQDPVPKESPKSCFFDSRSK 2650
2651 SLPSPHPVRYFDNSSLGLCPEVQNAGAESVDSQPGPWHASSGKDVPECKT 2700
2701 Q 2701

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.