| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q03164 from www.uniprot.org...
The NucPred score for your sequence is 0.99 (see score help below)
1 MAHSCRWRFPARPGTTGGGGGGGRRGLGGAPRQRVPALLLPPGPPVGGGG 50
51 PGAPPSPPAVAAAAAAAGSSGAGVPGGAAAASAASSSSASSSSSSSSSAS 100
101 SGPALLRVGPGFDAALQVSAAIGTNLRRFRAVFGESGGGGGSGEDEQFLG 150
151 FGSDEEVRVRSPTRSPSVKTSPRKPRGRPRSGSDRNSAILSDPSVFSPLN 200
201 KSETKSGDKIKKKDSKSIEKKRGRPPTFPGVKIKITHGKDISELPKGNKE 250
251 DSLKKIKRTPSATFQQATKIKKLRAGKLSPLKSKFKTGKLQIGRKGVQIV 300
301 RRRGRPPSTERIKTPSGLLINSELEKPQKVRKDKEGTPPLTKEDKTVVRQ 350
351 SPRRIKPVRIIPSSKRTDATIAKQLLQRAKKGAQKKIEKEAAQLQGRKVK 400
401 TQVKNIRQFIMPVVSAISSRIIKTPRRFIEDEDYDPPIKIARLESTPNSR 450
451 FSAPSCGSSEKSSAASQHSSQMSSDSSRSSSPSVDTSTDSQASEEIQVLP 500
501 EERSDTPEVHPPLPISQSPENESNDRRSRRYSVSERSFGSRTTKKLSTLQ 550
551 SAPQQQTSSSPPPPLLTPPPPLQPASSISDHTPWLMPPTIPLASPFLPAS 600
601 TAPMQGKRKSILREPTFRWTSLKHSRSEPQYFSSAKYAKEGLIRKPIFDN 650
651 FRPPPLTPEDVGFASGFSASGTAASARLFSPLHSGTRFDMHKRSPLLRAP 700
701 RFTPSEAHSRIFESVTLPSNRTSAGTSSSGVSNRKRKRKVFSPIRSEPRS 750
751 PSHSMRTRSGRLSSSELSPLTPPSSVSSSLSISVSPLATSALNPTFTFPS 800
801 HSLTQSGESAEKNQRPRKQTSAPAEPFSSSSPTPLFPWFTPGSQTERGRN 850
851 KDKAPEELSKDRDADKSVEKDKSRERDREREKENKRESRKEKRKKGSEIQ 900
901 SSSALYPVGRVSKEKVVGEDVATSSSAKKATGRKKSSSHDSGTDITSVTL 950
951 GDTTAVKTKILIKKGRGNLEKTNLDLGPTAPSLEKEKTLCLSTPSSSTVK 1000
1001 HSTSSIGSMLAQADKLPMTDKRVASLLKKAKAQLCKIEKSKSLKQTDQPK 1050
1051 AQGQESDSSETSVRGPRIKHVCRRAAVALGRKRAVFPDDMPTLSALPWEE 1100
1101 REKILSSMGNDDKSSIAGSEDAEPLAPPIKPIKPVTRNKAPQEPPVKKGR 1150
1151 RSRRCGQCPGCQVPEDCGVCTNCLDKPKFGGRNIKKQCCKMRKCQNLQWM 1200
1201 PSKAYLQKQAKAVKKKEKKSKTSEKKDSKESSVVKNVVDSSQKPTPSARE 1250
1251 DPAPKKSSSEPPPRKPVEEKSEEGNVSAPGPESKQATTPASRKSSKQVSQ 1300
1301 PALVIPPQPPTTGPPRKEVPKTTPSEPKKKQPPPPESGPEQSKQKKVAPR 1350
1351 PSIPVKQKPKEKEKPPPVNKQENAGTLNILSTLSNGNSSKQKIPADGVHR 1400
1401 IRVDFKEDCEAENVWEMGGLGILTSVPITPRVVCFLCASSGHVEFVYCQV 1450
1451 CCEPFHKFCLEENERPLEDQLENWCCRRCKFCHVCGRQHQATKQLLECNK 1500
1501 CRNSYHPECLGPNYPTKPTKKKKVWICTKCVRCKSCGSTTPGKGWDAQWS 1550
1551 HDFSLCHDCAKLFAKGNFCPLCDKCYDDDDYESKMMQCGKCDRWVHSKCE 1600
1601 NLSDEMYEILSNLPESVAYTCVNCTERHPAEWRLALEKELQISLKQVLTA 1650
1651 LLNSRTTSHLLRYRQAAKPPDLNPETEESIPSRSSPEGPDPPVLTEVSKQ 1700
1701 DDQQPLDLEGVKRKMDQGNYTSVLEFSDDIVKIIQAAINSDGGQPEIKKA 1750
1751 NSMVKSFFIRQMERVFPWFSVKKSRFWEPNKVSSNSGMLPNAVLPPSLDH 1800
1801 NYAQWQEREENSHTEQPPLMKKIIPAPKPKGPGEPDSPTPLHPPTPPILS 1850
1851 TDRSREDSPELNPPPGIEDNRQCALCLTYGDDSANDAGRLLYIGQNEWTH 1900
1901 VNCALWSAEVFEDDDGSLKNVHMAVIRGKQLRCEFCQKPGATVGCCLTSC 1950
1951 TSNYHFMCSRAKNCVFLDDKKVYCQRHRDLIKGEVVPENGFEVFRRVFVD 2000
2001 FEGISLRRKFLNGLEPENIHMMIGSMTIDCLGILNDLSDCEDKLFPIGYQ 2050
2051 CSRVYWSTTDARKRCVYTCKIVECRPPVVEPDINSTVEHDENRTIAHSPT 2100
2101 SFTESSSKESQNTAEIISPPSPDRPPHSQTSGSCYYHVISKVPRIRTPSY 2150
2151 SPTQRSPGCRPLPSAGSPTPTTHEIVTVGDPLLSSGLRSIGSRRHSTSSL 2200
2201 SPQRSKLRIMSPMRTGNTYSRNNVSSVSTTGTATDLESSAKVVDHVLGPL 2250
2251 NSSTSLGQNTSTSSNLQRTVVTVGNKNSHLDGSSSSEMKQSSASDLVSKS 2300
2301 SSLKGEKTKVLSSKSSEGSAHNVAYPGIPKLAPQVHNTTSRELNVSKIGS 2350
2351 FAEPSSVSFSSKEALSFPHLHLRGQRNDRDQHTDSTQSANSSPDEDTEVK 2400
2401 TLKLSGMSNRSSIINEHMGSSSRDRRQKGKKSCKETFKEKHSSKSFLEPG 2450
2451 QVTTGEEGNLKPEFMDEVLTPEYMGQRPCNNVSSDKIGDKGLSMPGVPKA 2500
2501 PPMQVEGSAKELQAPRKRTVKVTLTPLKMENESQSKNALKESSPASPLQI 2550
2551 ESTSPTEPISASENPGDGPVAQPSPNNTSCQDSQSNNYQNLPVQDRNLML 2600
2601 PDGPKPQEDGSFKRRYPRRSARARSNMFFGLTPLYGVRSYGEEDIPFYSS 2650
2651 STGKKRGKRSAEGQVDGADDLSTSDEDDLYYYNFTRTVISSGGEERLASH 2700
2701 NLFREEEQCDLPKISQLDGVDDGTESDTSVTATTRKSSQIPKRNGKENGT 2750
2751 ENLKIDRPEDAGEKEHVTKSSVGHKNEPKMDNCHSVSRVKTQGQDSLEAQ 2800
2801 LSSLESSRRVHTSTPSDKNLLDTYNTELLKSDSDNNNSDDCGNILPSDIM 2850
2851 DFVLKNTPSMQALGESPESSSSELLNLGEGLGLDSNREKDMGLFEVFSQQ 2900
2901 LPTTEPVDSSVSSSISAEEQFELPLELPSDLSVLTTRSPTVPSQNPSRLA 2950
2951 VISDSGEKRVTITEKSVASSESDPALLSPGVDPTPEGHMTPDHFIQGHMD 3000
3001 ADHISSPPCGSVEQGHGNNQDLTRNSSTPGLQVPVSPTVPIQNQKYVPNS 3050
3051 TDSPGPSQISNAAVQTTPPHLKPATEKLIVVNQNMQPLYVLQTLPNGVTQ 3100
3101 KIQLTSSVSSTPSVMETNTSVLGPMGGGLTLTTGLNPSLPTSQSLFPSAS 3150
3151 KGLLPMSHHQHLHSFPAATQSSFPPNISNPPSGLLIGVQPPPDPQLLVSE 3200
3201 SSQRTDLSTTVATPSSGLKKRPISRLQTRKNKKLAPSSTPSNIAPSDVVS 3250
3251 NMTLINFTPSQLPNHPSLLDLGSLNTSSHRTVPNIIKRSKSSIMYFEPAP 3300
3301 LLPQSVGGTAATAAGTSTISQDTSHLTSGSVSGLASSSSVLNVVSMQTTT 3350
3351 TPTSSASVPGHVTLTNPRLLGTPDIGSISNLLIKASQQSLGIQDQPVALP 3400
3401 PSSGMFPQLGTSQTPSTAAITAASSICVLPSTQTTGITAASPSGEADEHY 3450
3451 QLQHVNQLLASKTGIHSSQRDLDSASGPQVSNFTQTVDAPNSMGLEQNKA 3500
3501 LSSAVQASPTSPGGSPSSPSSGQRSASPSVPGPTKPKPKTKRFQLPLDKG 3550
3551 NGKKHKVSHLRTSSSEAHIPDQETTSLTSGTGTPGAEAEQQDTASVEQSS 3600
3601 QKECGQPAGQVAVLPEVQVTQNPANEQESAEPKTVEEEESNFSSPLMLWL 3650
3651 QQEQKRKESITEKKPKKGLVFEISSDDGFQICAESIEDAWKSLTDKVQEA 3700
3701 RSNARLKQLSFAGVNGLRMLGILHDAVVFLIEQLSGAKHCRNYKFRFHKP 3750
3751 EEANEPPLNPHGSARAEVHLRKSAFDMFNFLASKHRQPPEYNPNDEEEEE 3800
3801 VQLKSARRATSMDLPMPMRFRHLKKTSKEAVGVYRSPIHGRGLFCKRNID 3850
3851 AGEMVIEYAGNVIRSIQTDKREKYYDSKGIGCYMFRIDDSEVVDATMHGN 3900
3901 AARFINHSCEPNCYSRVINIDGQKHIVIFAMRKIYRGEELTYDYKFPIED 3950
3951 ASNKLPCNCGAKKCRKFLN 3969
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.