SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q03496 from www.uniprot.org...

The NucPred score for your sequence is 0.80 (see score help below)

   1  MTTDVQFSSQEIELFRVKEFLIANNPAKINNENKDAVLTQIEHDFRYLIQ    50
51 YIKDGLPNLNESTRLIFPDTFSICLLRSHQIIASKKIDSQEFLSAVKEQL 100
101 LTEANANIIFEYVLDFWADGGAPLMNALRDLFSKLLNLLKITYPMSTLKD 150
151 VLFNWMNEILEVPSTLRVQYYLIDALSSDFDLYYIIEKKPHFIDNSFSLM 200
201 NSDLLANSVGKCIVSLLLNIYEKHFKKNESFVQEWIQLWKSCALKYIHDK 250
251 QYTKSINLYIMIPLFKNMPNSAFTLFLECMSNKDPSLLLSLLKIGQELGI 300
301 EEEPFCDNKYTTVDSVNKLIEQDEYKLQVFEILTFSTKKSKPIRPFVFKT 350
351 IKQYLYVFFVDTELERRNYFCSSMKHFIFRTRDCAYSLARDARKLKKAEK 400
401 FPDEQREKLAQVEEARAFLVWLCNFIKYNLAPGTLYQANVTSLKLMHILI 450
451 KSGVDKSTPQKFLDNQNKREYPFSIPILQDVTFLRLLIDLLVSNYADVRE 500
501 LSKEMLFIMISADESRGLFLDTLDANALKWTATSLLSDYEKGDAGATVYE 550
551 FIFTVMGSQRSFIDQTIDILAQMVQNLQNDSIGCAENSIGPHFAALSLIL 600
601 NKFNSEENHQDTSKIISKLINLVLKSWEATRNVVCHDSAHGILPEKYANC 650
651 GVPDQVIISHAFRAIKEASYLLETILKKYPLTRDQLDSIGDLFIVQLSTI 700
701 RHSGAFQAVLPGLKAFCIRCQLEFPAILEELLSKSVKSLKSKTQHITRRS 750
751 GGLPFLVTTVLSAEVTKGRPLLQKTFENLLLVARLPIPPHQDEFDLPQVN 800
801 AINCINAIFVEPKLSVHCTSFVSEALELALLNFDCDIWALRNCSIMLFTS 850
851 LQNRIFGKVGRSVSAKLFFTKYSGLRQLLLNILNSSIAQYSGSERKSYQI 900
901 ESIFLVLNVLLRLRPTAGYTGLKEFNVSVYECLSNENWKIRDMASRVLHM 950
951 LSENFEEEIRKLLDLASIAKQNQLHGHLLALQQLVPQYLSGTRDMELIQR 1000
1001 ILEKKRMLLLENKCFITKKAYLKLTCCILETCDIPDSILKDYISTLRNTF 1050
1051 IAENNEYVVDGSKQLYLAQILDMLLKYEDSIYLDDICLLGLYSPFYEAQL 1100
1101 STLQYMNTNFHWETTRNSEFLEQLQLLLRVPDLLPMAKALVVKILSRKKN 1150
1151 TLSLTTCTDLLKTNNSEDTKLAAVSSLSAKLSSQTFHQVWNLLQGFFADS 1200
1201 CSKDFRLASLECLTAYPESCKNSRILLQLYNFLWDDDSEIREKASFYLNK 1250
1251 NFIQTADWEYNRNTSVTALIFTKKFVDVFTSSEVVEELCLQLFQYLNEYD 1300
1301 MFAAEESAKNCLFTIEKDNQFINELQKAMHILNMIKLTGRDISKCYKDQI 1350
1351 HHLKSALLEHFNTEDFKDSPLGWCSNAEIFSRITLLKELIQHYSPSDYEN 1400
1401 FINVLTKHSVHPLIISYSQL 1420

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.