| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q03661 from www.uniprot.org...
The NucPred score for your sequence is 0.97 (see score help below)
1 MSKKKETFTPRANKLKLTTPRRKLKILSSLLDADEDSKMKDQHGYSRVHN 50
51 DKYRVAKPTQHSTLHESISSRRSSHIHNKSLHEDSARALSWVDSLINRGK 100
101 SILTTLEKEDALFERSLEEERQRFQLHDSLMNKYTGNSKSHQRLIDLRKS 150
151 QYGTDTSFQNNDEIPLDSFISSPLPDAEDESSSNIDSDKDEDLEGKQSLI 200
201 KDFDLENDEYELSEEEKNSDGQSSPSIMILSDEEYAEEGALQDVSNDEYA 250
251 EEEGQVERKNIGQEQANVENATQISSSDSSEGQNYSEGVEMELEDDIDVE 300
301 SDAEKDESQGAEGTEHSVDFSKYMQPRTDNTKIPVIEKYESDEHKVHQRY 350
351 SEDGAFDFGSVNISVDDESEDEESQAESYSANAENVYHHNEHELDDKELI 400
401 EDIESSDSESQSAQESEQGSEDDFEYKMKNEKSTSEETENTSESRDQGFA 450
451 KDAYTKNKVEQQENDEEPEKDDIIRSSLDKNFHGNNNKSEYSENVLENET 500
501 DPAIVERENQINDVEGYDVTGKSVESDLHEHSPDNLYDLAARAMLQFQQS 550
551 RNSNCPQKEEQVSESYLGHSNGSNLSGRSLDESEEQIPLKDFTGENNNNL 600
601 KTDRGDLSSSVEIEVEKVSEKKLDGSTEKELVPLSTDTTINNSSLGNEDS 650
651 IYYSLDDADAISENLTDVPLMEIKTTPKYEVVISESVYSSTSYEDNTVAM 700
701 PPQVEYTSPFMNDPFNSLNDDYEKKHDLLKSTLAALAPAFTKKDAEFVEA 750
751 GVTKSCLTSTSGHTNIFHTSKETKQVSDLDESTENVTFENENTGDENKNQ 800
801 SKNFPGVANSTDKSTEDNTDEKYFSAINYTNVTGDSSCEDIIETASNVEE 850
851 NLRYCEKDMNEAEMSSGDECVKQNDDGSKTQISFSTDSPDNFQESNDNTE 900
901 FSSTKYKVRNSDLEDDESLKKELTKAEVVDKLDEEESEDSYEQDYADPEP 950
951 GNDEGSNENIVKGTKKDTLGIVEPENEKVNKVHEEETLFEANVSSSVNVQ 1000
1001 NKDMHTDVINQEAQANYEAGERKYYIQNTDTEEAHISIIERIDENAIGNN 1050
1051 MEIPERSCVEKTHNEVLFERRATTIENTKALENNTNMHDQVSQACSDSDR 1100
1101 DQDSTAEKNVEGSAKHNLDIRVSSSEIESVEPLKPESDRSNIFSSPIRVI 1150
1151 GAVVKGVGKVVDVAESFVKKIDVMDSESDDNVDIGDYNQDIFNKSNSTDA 1200
1201 SVNMKSVSSKERDSDEDEAVILGGVTAEAHNDNGNNSRVINIDPTTNGAY 1250
1251 EEDSEVFRQQVKDKENLHKSEEPLVEGLQSEQHFEKKDHSENEEEFDTIY 1300
1301 GDITSANIHSNAPDDIKRQQLLKNLSDLENYSQRLIEDSRRGKNQEESDE 1350
1351 VNTSRERDLTFEKSVNEKYAGAIEEDTFSELDISIQHPEHEEDLDLSNNQ 1400
1401 ERSIEELNSEPEEAELYELEIEGPTETAASSKMNDDERQRGNIPSTDLPS 1450
1451 DPPSDKEEVTDSYPYSNSENITAEKSAPTSPEVYEIFSDTPNEVPMEIND 1500
1501 EIPATTLEKHDKTNVTSVLDDRSEHLSSHDVDNEPHDNSINIKVNEGEEP 1550
1551 EHQAVDIPVKVEVKEEQEEMPSKSVLEEQKPSMELINDKSSPENNNDEET 1600
1601 NREKDKTKAKKKSRKRNYNSRRRKRKITEGSSAASNTKRRRGHEPKSRGQ 1650
1651 NTHPSVDK 1658
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.