 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q04002 from www.uniprot.org...
The NucPred score for your sequence is 0.69 (see score help below)
1 MSYPGKDKNIPGRIIEALEDLPLSYLVPKDGLAALVNAPMRVSLPFDKTI 50
51 FTSADDGRDVNINVLGTANSTTSSIKNEAEKERLVFKRPSNFTSSANSVD 100
101 YVPTNFLEGLSPLAQSVLSTHKGLNDSINIEKKSEIVSRPEAKHKLESVT 150
151 SNAGNLSFNDNSSNKKTKTSTGVTMTQANLAEQYLNDLKNILDIVGFDQN 200
201 SAEIGNIEYWLQLPNKKFVLTTNCLTKLQMTIKNITDNPQLSNSIEITWL 250
251 LRLLDVMVCNIKFSKSSLKMGLDDSMLRYIALLSTIVLFNIFLLGKNDSN 300
301 LHRESYIMEPVNFLSDLIESLKILTIEYGSLKIEFDTFQEALELLPKYIR 350
351 NGPFLDDNVTAKLVYIFSDLLMNNDIEATTNIQFQSFWDNVKRISSDILV 400
401 SLFGSFDQQRGFIIEELLSHIEKLPTKRIQKKLRKVGNQNIYITDFTFTL 450
451 MSMLENINCYSFCNQMKDIAPENIDLLKNEYKKQEEFLFNIVEHINDTIL 500
501 ERFFKNPSALRYVIDNFVQDLLLLISSPQWPVTEKILSSLLKRLLSVYSP 550
551 SMQVSANIETICLQLIGNIGSTIFDIKCSTRDHEDNNLIKMINYPETLPH 600
601 FFKSFEECIAYNETIKCRRSATRFLWNLRLGTILILEEYTKDAKEQIITV 650
651 DNELKKILEQIKDGGLGPELENREADFSTIKLDYFSILHAFELLNLYDPY 700
701 LKLILSLLAKDKIKLRSTAIKCLSMLASKDKVILSNPMVKETIHRRLNDS 750
751 SASVKDAILDLVSINSSYFEFYQQINNNYNDDSIMVRKHVLRINEKMYDE 800
801 TNDIVTKVYVIARILMKIEDEEDNIIDMARLILLNRWILKVHEVLDQPEK 850
851 LKEISSSVLLVMSRVAIMNEKCSQLFDLFLNFYLLNKEAHSKEAYDKITH 900
901 VLTILTDFLVQKIVELNSDDTNEKNSIVDKQNFLNLLAKFADSTVSFLTK 950
951 DHITALYPYMVSDEKSDFHYYILQVFRCTFEKLANFKQKFLYDLETTLLS 1000
1001 RLPKMNVREIDEAMPLIWSVATHRHDTARVAKACSSCLSHLHPYINKANN 1050
1051 EEAAIVVDGKLQRLIYLSTGFARFCFPKPSNDKIAFLQEGETLYEHITKC 1100
1101 LLVLSKDKITHVIRRVAVKNLTKLCGNHPKLFNSRHVLHLLDKEFQSDQL 1150
1151 DIKLVILESLYDLFLLEERKSVRNTGVNSTLSSNSILKKKLLKTNRVEFA 1200
1201 NDGVCSALATRFLDNILQLCLLRDLKNSLVAIRLLKLILKFGYTNPSHSI 1250
1251 PTVIALFASTSQYIRHVAYELLEDLFEKYETLVFSSLSRGVTKAIHYSIH 1300
1301 TDEKYYYKHDHFLSLLEKLCGTGKKNGPKFFKVLKRIMQSYLDDITDLTS 1350
1351 TNSSVQKSIFVLCTNISNITFVSQYDLVSLLKTIDLTTDRLKEVIMDEIG 1400
1401 DNVSSLSVSEEKLSGIILIQLSLQDLGTYLLHLYGLRDDVLLLDIVEESE 1450
1451 LKNKQLPAKKPDISKFSAQLENIEQYSSNGKLLTYFRKHVKDT 1493
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.