 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q04690 from www.uniprot.org...
The NucPred score for your sequence is 0.88 (see score help below)
1 MAAHRPVEWVQAVVSRFDEQLPIKTGQQNTHTKVSTEHNKECLINISKYK 50
51 FSLVISGLTTILKNVNNMRIFGEAAEKNLYLSQLIILDTLEKCLAGQPKD 100
101 TMRLDETMLVKQLLPEICHFLHTCREGNQHAAELRNSASGVLFSLSCNNF 150
151 NAVFSRISTRLQELTVCSEDNVDVHDIELLQYINVDCAKLKRLLKETAFK 200
201 FKALKKVAQLAVINSLEKAFWNWVENYPDEFTKLYQIPQTDMAECAEKLF 250
251 DLVDGFAESTKRKAAVWPLQIILLILCPEIIQDISKDVVDESNINKKLFL 300
301 DSLRKALAGHGGSRQLTESAAIACVKLCKASTYINWEDNSVIFLLVQSMV 350
351 VDLKNLLFNPSKPFSRGSQPADVDLMIDCLVSCFRISPHNNQHFKICLAQ 400
401 NSPSTFHYVLVNSLHRIITNSALDWWPKIDAVYCHSVELRNMFGETLHKA 450
451 VQGCGAHPAIRMAPSLTFKEKVTSLKFKEKPTDLETRSYKCLLLSMVKLI 500
501 HADPKLLLCNPRKQGPETQSSTAELITGLVQLVPQSHMPEVAQEAMEALL 550
551 VLHQLDSIDLWNPDAPVETFWEISSQMLFYICKKLTSHQMLSSTEILKWL 600
601 REILICRNKFLLKNKQADRSSCHSLYLYGVGCEMSATGNTTQMSVDHDEF 650
651 LRACTPGASLRKGRGNSSMDSTAGCSGTPPICRQAQTKLEVALYMFLWNP 700
701 DTEAVLVAMSCFRHLCEEADIRCGVDEVSVHNFLPNYNTFMEFASVSNMM 750
751 STGRAALQKRVMALLRRIEHPTAGNIEAWEDTHAKWEQATKLILNYPKAK 800
801 MEDGQAAESLHKTIVKRRMSHVSGGGSIDLSDTDSLQEWINMTGFLCALG 850
851 GVCLQQRSSSGLATYSPPMGAVSERKGSMISVMSSEGNIDSPVSRFMDRL 900
901 LSLMVCNHEKVGLQIRTNVKDLVGLELSPALYPMLFNKLKNTISKFFDSQ 950
951 GQVLLSDSNTQFVEQTIAIMKNLLDNHTEGSSEHLGQASIETMMLNLVRY 1000
1001 VRVLGNMVHAIQIKTKLCQLVEVMMARRDDLSFCQEMKFRNKMVEYLTDW 1050
1051 VMGTSNQAADDDIKCLTRDLDQASMEAVVSLLAGLPLQPEEGDGVELMEA 1100
1101 KSQLFLKYFTLFMNLLNDCSEVEDENAQTGGRKRGMSRRLASLRHCTVLA 1150
1151 MSNLLNANVDSGLMHSIGLGYHKDLQTRATFMEVLTKILQQGTEFDTLAE 1200
1201 TVLADRFERLVELVTMMGDQGELPIAMALANVVPCSQWDELARVLVTLFD 1250
1251 SRHLLYQLLWNMFSKEVELADSMQTLFRGNSLASKIMTFCFKVYGATYLQ 1300
1301 KLLDPLLRVIITSSDWQHVSFEVDPTRLEPSESLEENQRNLLQMTEKFFH 1350
1351 AIISSSSEFPSQLRSVCHCLYQATCHSLLNKATVKERKENKKSVVSQRFP 1400
1401 QNSIGAVGSAMFLRFINPAIVSPYEAGILDKKPPPRIERGLKLMSKVLQS 1450
1451 IANHVLFTKEEHMRPFNDFVKSNFDLARRFFLDIASDCPTSDAVNHSLSF 1500
1501 ISDGNVLALHRLLWNNQEKIGQYLSSNRDHKAVGRRPFDKMATLLAYLGP 1550
1551 PEHKPVADTHWSSLNLTSSKFEEFMTRHQVHEKEEFKALKTLSIFYQAGT 1600
1601 SKAGNPIFYYVARRFKTGQINGDLLIYHVLLTLKPYYAKPYEIVVDLTHT 1650
1651 GPSNRFKTDFLSKWFVVFPGFAYDNVSAVYIYNCNSWVREYTKYHERLLT 1700
1701 GLKGSKRLIFIDCPGKLAEHIEHEQQKLPAATLALEEDLKVFHNALKLAH 1750
1751 KDTKVSIKVGSTAVQVTSAERTKVLGQSVFLNDIYYASEIEEICLVDENQ 1800
1801 FTLTIANQGTPLTFMHQECEAIVQSIIHIRTRWELSQPDSIPQHTKIRPK 1850
1851 DVPGTLLNIALLNLGSSDPSLRSAAYNLLCALTCTFNLKIEGQLLETSGL 1900
1901 CIPANNTLFIVSISKTLAANEPHLTLEFLEECISGFSKSSIELKHLCLEY 1950
1951 MTPWLSNLVRFCKHNDDAKRQRVTAILDKLITMTINEKQMYPSIQAKIWG 2000
2001 SLGQITDLLDVVLDSFIKTSATGGLGSIKAEVMADTAVALASGNVKLVSS 2050
2051 KVIGRMCKIIDKTCLSPTPTLEQHLMWDDIAILARYMLMLSFNNSLDVAA 2100
2101 HLPYLFHVVTFLVATGPLSLRASTHGLLINIIHSLCTCSQLHFSEETKQV 2150
2151 LRLSLTEFSLPKFYLLFGISKVKSAAVIAFRSSYRDRSFSPGSYERETFA 2200
2201 LTSLETVTEALLEIMEACMRDIPTCKWLDQWTELAQRFAFQYNPSLQPRA 2250
2251 LVVFGCISKRVSHGQIKQIIRILSKALESCLKGPDTYNSQVLIESTVIAL 2300
2301 TKLQPLLNKDSPLHKALFWVAVAVLQLDEVNLYSAGTALLEQNLHTLDSL 2350
2351 RIFNDKSPEEVFMAIRNPLEWHCKQMDHFVGLNFNSNFNFALVGHLLKGY 2400
2401 RHPSPAIVARTVRILHTLLTLVNKHRNCDKFEVNTQSVAYLAALLTVSEE 2450
2451 VRSRCSLKHRKSLLLTDISMENVPMDTYPIHHGDPSYRTLKETQPWSSPK 2500
2501 GSEGYLAATYPAVGQTSPRARKSMSLDMGQPSQANTKKLLGTRKSFDHLI 2550
2551 SDTKAPKRQEMESGITTPPKMRRVAETDYEMETQRIPSSQQHPHLRKVSV 2600
2601 SESNVLLDEEVLTDPKIQALLLTVLATLVKYTTDEFDQRILYEYLAEASV 2650
2651 VFPKVFPVVHNLLDSKINTLLSLCQDPNLLNPIHGIVQSVVYHEESPPQY 2700
2701 QTSYLQSFGFNGLWRFAGPFSKQTQIPDYAELIVKFLDALIDTYLPGIDE 2750
2751 ETSEESLLTPTSPYPPALQSQLSITANLNLSNSMTSLATSQHSPGLDKEN 2800
2801 VELSPTAGHCNSGRTRHGSASQVQKQRSAGSFKRNSIKKIV 2841
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.