SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q05909 from www.uniprot.org...

The NucPred score for your sequence is 0.72 (see score help below)

   1  MRRLLEPCWWILFLKITSSVLHYVVCFPALTEGYVGTLQESRQDSSVQIR    50
51 RRKASGDPYWAYSGAYGPEHWVTSSVSCGGSHQSPIDILDHHARVGDEYQ 100
101 ELQLDGFDNESSNKTWMKNTGKTVAILLKDDYFVSGAGLPGRFKAEKVEF 150
151 HWGHSNGSAGSEHSVNGRRFPVEMQIFFYNPDDFDSFQTAISENRIIGAM 200
201 AIFFQVSPRDNSALDPIIHGLKGVVHHEKETFLDPFILRDLLPASLGSYY 250
251 RYTGSLTTPPCSEIVEWIVFRRPVPISYHQLEAFYSIFTTEQQDHVKSVE 300
301 YLRNNFRPQQALNDRVVSKSAVRDAWNHDLADFLDNPLGTEASKVCSSPP 350
351 IHMKVQPLNQTALQVSWSQPETIYHPPIMNYMISYSWTKNEDEKEKTFTK 400
401 DSDKDLKATISHVSPDSLYLFRVQAVCRNDMRSDFSQTMLFQANTTRIFQ 450
451 GTRIVKTGVPTASPASSADMAPISSGSSTWTSSGIPFSFVSMATGMGPSS 500
501 SGSQATVASVVTSTLLAGLGFGGGGISSFPSTVWPTRLPTASAASKQAGR 550
551 TVLATTEALASPGPDVHSAPSKDSEGTEEGEKEEKSESEDGEREHEEEEK 600
601 DSEKKEKSEATHTAAESDRTAPAPTPSSPHRTAAEGGHQTIPGRRQDHSA 650
651 PATDQPGHVAPDLDPLVDTATQVPPTATEEHYSGSDPRRPEMPSKKPMSR 700
701 GDRFSEDSKFITVNPAEKNTSGMLSRPSPGRMEWIIPLIVVSALTFVCLV 750
751 LLIAVLVYWRGCNKIKSKGFPRRSREVPSSGERGEKGSRKCFQTAHFYVE 800
801 DSSSPRVVPNESVPIIPIPDDMEAIPVKQFGKHIGELYSNSQHGFSEDFE 850
851 EVQRCTADMNITAEHSNHPDNKHKNRYINILAYDHSRVKLRPLPGKDSKH 900
901 SDYINANYVDGYNKAKAYIATQGPLKSTFEDFWRMIWEQNTGIIIMITNL 950
951 VEKGRRKCDQYWPTENTEEYGNIIVTLKSTKVHACYTVRRLSVRNTKVKK 1000
1001 GQKGNPKGRQNERTVIQYHYTQWPDMGVPEYALPVLTFVRRSSAARMPDM 1050
1051 GPVLVHCSAGVGRTGTYIVIDSMLQQIKDKSTVNVLGFLKHIRTQRNYLV 1100
1101 QTEEQYIFIHDALLEAILGKETAVSSSQLHSYVNSILIPGVGGKTRLEKQ 1150
1151 FKLITQCNAKYVECFSAQKECNKEKNRNSSVVPAERARVGLAPLPGMKGT 1200
1201 DYINASYIMGYYRSNEFIITQHPLPHTTKDFWRMIWDHNAQIIVMLPDNQ 1250
1251 SLAEDEFVYWPSREESMNCEAFTVTLISKDRLCLSNEEQIIIHDFILEAT 1300
1301 QDDYVLEVRHFQCPKWPNPDAPISSTFELINVIKEEALTRDGPTIVHDEY 1350
1351 GAVSAGMLCALTTLSQQLENENAVDVFQVAKMINLMRPGVFTDIEQYQFV 1400
1401 YKAMLSLISTKENGNGPMTGDKNGAVLTAEESDPAESMESLV 1442

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.