 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q09140 from www.uniprot.org...
The NucPred score for your sequence is 0.75 (see score help below)
1 MRWGFWFAIATLITICYAAKPLDVKIAATFNAPSFSALIAESLYQEKKEG 50
51 FIWYLNHLSDLLDAENTTEKELYINVVNSLKREYVLSDEELSSLQFSLGL 100
101 FSGAPKLQAFSSIVQSRSCDCDTWLQLDEESQVCFSDLPKDSPLFSKLYS 150
151 KNPLDYEVVKTSATGIPYAVVVTSFERDLIPFHELYYKLALEGKCNYVIR 200
201 YSPPSSSKLNSKLYVKGFGTHVSLKRTDYLVVDDREFPREKGDNPASFTS 250
251 SRNKRSNERLFGMTSDSLQTVTPDKIAILDLLATQSIASSTDMLTAFREL 300
301 TQDFPIYAHYLSIQPDVSNDLIEELNQFQSQYVPEGINTIWLNGLSLDLE 350
351 ETDAFSILSLIKKEKDMFDRFEALGIKSSKVLDIVTNEAFANEDSDFKFV 400
401 KFHCQDDIEDWKAIHWVNEIESNPKYDNWPKSIQILLKPIYPGQLHMLGK 450
451 QLHTVIYPIFPSSPSSLPLLSELIQFSRRPSPVQTGMVCAANDDDEFAQT 500
501 VCKSFFYISKESGTDSALKFLYKCLNSDSSADLYSLLEEHLPLSEHDDDT 550
551 LANLKKDLSSSFFDHYMSKSNSWVNRLGIDSSASEVIVNGRIISHDENYD 600
601 RSMYGIFLEDIPEVQIAVAEGKISEDDNLLDFILRDASLTRNPLVYPSAK 650
651 SSIKSIDIKRVLENVGSLNHEDILLIGSSNAKYSFWLVADFNEKEGLEIL 700
701 SLLADLLSENKDANLMLIQEGKNHVVPPLFAKLLSSPKRSSKHLQEILNS 750
751 SLDPSSGVVNDMDKALKFLKKSKAVVKELGLTGECKSALLLNGRMICSFS 800
801 VDSLNTADLKMLMQMEYDNYLSKLSNIAGSSRRLKNSRAISFLSSYLKTL 850
851 ESTPMSTSSPTKEEKLFPRDFIYNKLGVGNATFETDDFSKAYYQFVAVLD 900
901 PLSKDSQKWSAILEAVSKLNGVGVRIHFNPKQTLSELPLTRFYRYSISAE 950
951 PEFDALGHLEESYVEFDNLPADTLLTMDIEARDAWTVMQKDVDIDLFNIK 1000
1001 LEHTSEAEALDSHTAIYELKNILVQGYSQEEFRKSPPRGMQLKLGNLTNS 1050
1051 HVTDTIVLSNLGYFQLKANPGVWTLEPMDGRSSQFYEILSLNKKNSYKDP 1100
1101 QVIVDSFEGVTLNPVMRRKPGFESADIMDEDLSSHKFFDKIKKSLSFFNF 1150
1151 KRKEASINIFSVASGHLYERFLYIMTKSVIEHTDKKVKFWFIENFLSPSF 1200
1201 KSSIPAIAKKYNFEYEYITYNWPHWLRKQEEKQREIWGYKILFLDVLFPL 1250
1251 ELHKVIYVDADQIVRADLQELMDMDLHGAPYGYTPMCDSREEMEGFRFWK 1300
1301 KGYWKKFLRGLKYHISALYVVDLDRFRKMGAGDLLRRQYQLLSADPNSLS 1350
1351 NLDQDLPNHLQHLIPIYSLPQDWLWCETWCSDESLKTAKTIDLCQNPLTK 1400
1401 EKKLDRARRQVSEWTSYDNEIASVLQTASSQSDKEFEEKDNNSSPDEL 1448
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.