SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q09417 from www.uniprot.org...

The NucPred score for your sequence is 0.72 (see score help below)

   1  MFIPNDRPSVLQLPKHEKDSTAADIKSIVANRDRRLIAVATNDAIYIWLA    50
51 NPQLLLCSVGVIDANFKETRGELKEIYWKPDSTSIAVTTNQCKILIYNLD 100
101 LRDDEQCYNFTDSADPYFQRNSPELFIKGSRPTAHLHPTIIINLADIPTC 150
151 CVPSRDEFLVCLQNGFTHHVTWTGEIIASLSFRASSIPFSVDQLQSKSEN 200
201 ITSKSTYIFDAVYAPLLGGFAIVLSDGQGALLTSNDPNFAPNAILGVWAP 250
251 NMKDATCCDVNHKFLLILFGCKNGDVCAYNIDELNGSLVQSFRVAPKVTN 300
301 GPDLTNRLGPVHRITALANGYGFGAIWSPLSGAHALPRLVAVFTSFGAQS 350
351 FCNLEGVVEEDQNDRYTAIEWGPEGFQLWLGTENELMMQPFVRSASCSSP 400
401 AMEHCDRAVLMSDSQVLISAARDREAEACAPHSVWDHITVTHEYLSSNWP 450
451 LRYASTDRNYKHLVVAGDQGMAYCSLSNRRWKIFGNETQEKNLLVTGGVF 500
501 IWNDDVIGVVGVAADTDKSHLSFYPISQRLDSRYASVVDLEHKSVMSVLR 550
551 DDVCAVFDISAQITLYKLTAHLETGRDAFTKVSTEIVTVIRINEIVPHPT 600
601 CIVSLQMTQLNLDVRGKLSPAFYSSIDTVLVNISGRLITLSVNEDGKLHQ 650
651 PMVIASYVEKMWHDRCQVSQSTQSQNQDLPWKNHRRNGSNVSIQSVSTST 700
701 TSEPSSPMNQSCSSHLSNALWIACGAKGIKVWMPLVPGKRNLATQEMTFI 750
751 AKRIMLPFELDIYPIVISAKDCLAMGVESQLQHVARASRNQGQMESITMY 800
801 GLHRNSEVFVHHLLRQLLKRNLGVFALELAGACRSLPHFTHALELLLHGV 850
851 LEEEATSSEPIPDPLLPRCVAFIHEFPEFLKTVAHCARKTELALWRTLFD 900
901 VTGSPNALFEECLQLKQLENAASFVIVLQNLETTEVSMDQAARLVKEALE 950
951 EKKWTIAKEMVRFARSIGSEDIDAFFRTPPPSAKTSLSRRPTVSSPSADS 1000
1001 STEFVINRFQAGAAGGRLNKVRHSQSTEQKDAPRKDSIGGSSKDKMALSW 1050
1051 GLSGELSPQLATNRLAAKMTSILEDHAWHLLNNYWLLDLGFFWSELQFDL 1100
1101 LGLLETRRKQISLSPKTTNENCFLIEDFALALTRLHAQFSWPYPLIGSQF 1150
1151 VHQIEKKLGNIRVSQSTASLNGLLNDSLDNIKKPKARKLERTVVDLNGAR 1200
1201 SRIRETDIEASEEDVEIQEAVLERVRGSAVELAPVIDRSPSTSSSMNHHA 1250
1251 PLAPPSPSSCDSRSLAGDCYQNTDFLVGEKSSRGNLQSSHQLELLLSLFS 1300
1301 QTATIDWIFLFCLLSRDERKLRQEINVSMVRRAGEKSFARVRFACSELSR 1350
1351 WAVEKCCGYVALLQAFDAHLAVVAEQAGCADLKFSPDNENRKASQKTSAD 1400
1401 DPKRGRRRADSGSSKLNNSFSNPKLNGMNGGRRERSRSADRAHKSVKRYD 1450
1451 DVVCAEDALEKANEEGCSIM 1470

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.