SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q09449 from www.uniprot.org...

The NucPred score for your sequence is 0.77 (see score help below)

   1  MLPTSSNNEENRKPENSFPPTHFDTWERLSDYQKPSSSTTDDAYGKPVAK    50
51 ISPTASIDERETGIIGSTLRQDSTDSDSTGSSNMNPYDRLDKEVISKKNA 100
101 HTNSYRNDVDELEGSLRTLGLQKVNAPTISSFSAWKSQSSALPAPSSSET 150
151 SKIVKAEIKAPQQPMSLNPNYFDVMREMEKSMNIFTKLFRGSQIRNKNDL 200
201 PSGRHLVNYRQNHAFDFAAMSHIWKENKMENLPKLPHRANLVMTLPSSRV 250
251 RNSKICAFYRVLEKKEDKYILVACHVNIHGFHRGDLRFVEVNNRTVLKGF 300
301 ERSSVIGHLFLGDILTVTELTRCNETVSNVASSVEDASPDAPCQWMASKV 350
351 VLFPRHEPVNVQFKFTCNGMASVVSTNEPMSVILNNLTEAKTNVEYTGIA 400
401 FKSASYTVHTEDYTKKWYERIQEEISNIMIYPKALSTIYQYEEYTPNFVV 450
451 EKQEQEEHPYQQDLEDLDLYRQHEMQTNVFTKFFDIGKSEKRKFGPGKSI 500
501 SNCRHSDAIDFAAMSYIWKNIRQQHLPKLPKLPNMVLPLPTSMPLDSEIC 550
551 AFYRVLVENKSKYILIACHMNVHGYHRGDLRFLEINESTKLYGFEGRSVI 600
601 GQLFLGDIVAVTELARCNGHGSDAFKIPFDVSMSSQNTCTWMASKITLPS 650
651 RPPPASVLFSFMKNRMAVVKGCDEPMNVEVKSIQNVEPDLIYKGTAFKPE 700
701 KPELNFTEGFIKKKRHQIGSITLRIASYPNSFGTIYNFQESDIDNEHYKI 750
751 GINAFSEEKFTEISLDEREKIVETCSLMGFSAANTIFNGRFDCRAFKMEE 800
801 IKKNGMTVMFCIENPTSQPTLGLWCAGNRIVIGGPNGDVNGAIETVIDDP 850
851 DIGYLRIAARLSRDIPKKFSFKGDGEFFVSQREVFENEILDDGYFKTLDP 900
901 GCNGRRIIETLYGGKPLERVVVDKRDSSIERMMSQLFGVGSGISEHKTSG 950
951 KKSEDTPTQFYFPSTPEPLALNKYQCEYVQMLLDGNPLIIGSSPFGCGKS 1000
1001 MTIITAALELYKLKKNRKQLLITQSNYASVNLIDIAQRVCLSGDDDLKDL 1050
1051 KFVRFVSEKNWNELPSNCRTDSDMPYLMNKLFKDWAMGRIDLTNLTCLKT 1100
1101 HHYVQMVSHIIKNDLVNPMLFGDHIAQIYDKLSADFSRAPHAQTLVEAFF 1150
1151 MIYKPDLVMVTADSAKGLLNILRDVCAVQIDEASQLAECTLLGLLKSFNN 1200
1201 ASFGLIGDIHQLPPYCEEGLEGKLKDFGIGNTMERAIKEKMFPVCTLRNV 1250
1251 YRCHPKTTELLSELFYDGALVSGVSELARSDFMTKRDDFWPNPKFPMMFV 1300
1301 NNTGASTKMGTSTSNSSEKSIVGEIVQNLINDPRNPVNPSDIGVISFYSA 1350
1351 QTSILTEHLRGSGVKCGTVDAFQGSEKEIIIMCSTNERISDFMQLSNRLN 1400
1401 VAMSRAKQVTIIIGHLDGLRRANYWSTIVNKIEQNGNLVNANDWYQNQRR 1450
1451 NKVSLSSYPLISTSRQSKQQRANEYNSQHKHVKRQSNNDYGSQRSVTNSL 1500
1501 NPEFVGKWDDETYGDWPTIQKST 1523

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.