 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q09624 from www.uniprot.org...
The NucPred score for your sequence is 0.77 (see score help below)
1 MKKSNFFVLLLLAISAIQIDGLHYQLLDGIATFRLDNDDTTIGGVPRNSQ 50
51 GVVKIKLSCGLNRLSVENKVTEVSSLELIHNCIQTETRLVGLFLNSTWIT 100
101 LNEVNDDDEISIAVEAKYEVCYDDGIDRCDGSLWWLQVGGNEMALLGYRE 150
151 KCESGEINEEYARRMCKRPYRSEKSTAISDSQGVYYDGQVLKGVRAKQFS 200
201 MRTSGSPTLRRMKRDAGDNTCDYTIESTSTSTTTPTTTTVTSTVTSTTTV 250
251 PTSTSTVTTAMSTSTSTPSTSTTIESTSTTFTSTASTSTSSTSTTQQSSS 300
301 TITSSPSSTTLSTSIPTTTTPEITSTLSSLPDNAICSYLDETTTSTTFTT 350
351 TMLTSTTTEEPSTSTTTTEVTSTSSTVTTTEPTTTLTTSTASTSTTEPST 400
401 STVTTSPSTSPVTSTVTSSSSSSTTVTTPTSTESTSTSPSSTVTTSTTAP 450
451 STSTTGPSSSSSTPSSTASSSVSSTASSTQSSTSTQQSSTTTKSETTTSS 500
501 DGTNPDFYFVEKATTTFYDSTSVNLTLNSGLGIIGYQTSIECTSPTSSNY 550
551 VSTTKDGACFTKSVSMPRLGGTYPASTFVGPGNYTFRATMTTDDKKVYYT 600
601 YANVYIQEYSSTTIESESSTSAVASSTSSTPSTPSSTLSTSTVTEPSSTR 650
651 SSDSTTTSAGSTTTLQESTTTSEESTTDSSTTTISDTSTTSSSPSSTTAD 700
701 STSTLSVDQFDFILDSGLSWNETRHNEDSINIVPLPTNAITPTERSQTFE 750
751 CRNVSTEPFLIIKESTCLNYSNTVLNATYSSNIPIQPIETFLVGIGTYEF 800
801 RINMTDLTTMQVVSHIFTLNVVADSTSTSEVTSTTSTGSSSESSAISTTS 850
851 GIESTSTLEASTTDASQDSSTSTSDSGTTSDSTTIDSSNSTPSTSDSSGL 900
901 SQTPSDSSSASDSMRTTTVDPDASTETPYDFVLENLTWNETVYYSENPFY 950
951 ITPIPNKEPGALTTAMTCQCRNDSSQPFVLLKESNCLTEFGKNGAYSASV 1000
1001 SFNPMTSFVPATGTYEFLINVTNRASGESASHIFTMNVVLPTTTTETPPT 1050
1051 TVSSSDDAGGKTGGTGATGGTGGTGSGGSATTLSTGDAVRSTTSGSGSGQ 1100
1101 SSTGSGAGGSGTTASGSGSGGSSGTGSDGVNSGKTTALNGDGTGSGTATT 1150
1151 PGSHLGDGGSTSGSGSDSNGSSGVSTKSSSGSDTSGSSDSSGANGAFSAT 1200
1201 AQPSTRTTKTRSSLATVSPISAAEQAIIDAQKADVMNQLAGIMDGSASNN 1250
1251 SLNTSSSLLNQISSLPAADLVEVAQSLLSNTLKIPGVGNMSSVDVLKTLQ 1300
1301 DNIATTNSELADEMAKVITKLANVNMTSAQSLNSVLSSLDLALKGSTVYT 1350
1351 LGVSSTKSKDGTYAVIFGYVIASGYTLVSPRCTLSIYGSTIYLTGDTRAS 1400
1401 YKQLDGDTVTADTMLAAAIGIQGMFATNGRTVQVEQDKIDDKRSLVSGNI 1450
1451 MATMSGVGDVQSGEYSYNDMYVTAWNVTYDNSTVGSTSQKNTSFSFNIPV 1500
1501 SEVQYILLIESGTMIKLHSTQNIVSRGLVVTASYGGVTYTITCTNGTGKF 1550
1551 VEVDTDNAIFSYNADSFTVVASDGSSASTVKKLIQMPIVIENVNLALFNQ 1600
1601 TTSPLVFSNAGSYSMRMVLSPQDIGIPAVSALSQTVSISTLSPTASYTKD 1650
1651 DLQSLIKEQTLVTVSGTLFFSKASSIDVSGYSFFVDSTALYLSNSVTTLV 1700
1701 ISSPTYNIVSLALGGYGIQITAGTYTSGSQTHTVTLMEFSDTQKMRIDGG 1750
1751 LIIRNGTNGYVIQNGQVSTEGDVSGTKIDIVPQSLMNQESQQQIETILSN 1800
1801 TQDFLTNNGMTMTDAEINDTSNSLLSIAGSLTSALKIALDNPLSSDLAAN 1850
1851 LKYATDNYDSLYNVLPSDPDNIVYVEEMTSEEWAAYVTKMFQKNIAKNLA 1900
1901 NQLASTLDTLENTLAARAIATGNLPYDYSNSVDGTGMVIVIDDASNIVGK 1950
1951 TQNCEEWAFKLPSPASTLNTAEITDKTLIQVGLVCYATNPRTYVDNFDML 2000
2001 ITSGALEAHIKDENQIIIPITGTTAPIYVNGRGSEDDAVLTLMQQGDFAS 2050
2051 YQILDLHAFRTTNWNNSLQVEIIASQDYEIPNNDDTYMFSSFQSLPGPLE 2100
2101 SNHEWIFDLNTLNKTSNYFVTAGNLINNTGLFFIGIGKRNSSTNTGNSSD 2150
2151 IVNYGQYDSMQWSFARSVPMDYQVAAVSKGCYFYQKTSDVFNSEGMYPSD 2200
2201 GQGMQFVNCSTDHLTMFSVGAFNPTIDADFSYNYNVNEIEKNVKVMIAAV 2250
2251 FMLVVYGCLTINAIICQRKDASRGRLRFLKDNEPHDGYMYVIAVETGYRM 2300
2301 FATTDSTICFNLSGNEGDQIFRSFRSEEDGNWEFPFSWGTTDRFVMTTAF 2350
2351 PLGELEYMRLWLDDAGLDHRESWYCNRIIVKDLQTQDIYYFPFNNWLGTK 2400
2401 NGDGETERLARVEYKRRFLDESMSMHMLAQTISWFAMFTGGGNRLRDRVS 2450
2451 RQDYSVSIIFSLVVVSMISITILKSDNSIISDSKSVSEFTFTIKDIAFGV 2500
2501 GFGVLITFLNSLHILLCTKCRSHSEHYYYKKRKREDPEFKDNSGSWPMFM 2550
2551 AGMARTIIVFPVLMGLIYISGAGMSLMDDLANSFYIRFLISLILWAVVFE 2600
2601 PIKGLIWAFLILKTRKSHKIINKLEEALLRAKPAETFLRNPYGKIEKGLG 2650
2651 TEIADVTKLRDTENRKMRDEQLFITIRDMLCFFASLYIMVMLTYYCKDRH 2700
2701 GYWYQLEMSTILNINQKNYGDNTFMSIQHADDFWDWARESLATALLASWY 2750
2751 DGNPAYGMRAYMNDKVSRSMGIGTIRQVRTKKSAECTMFKQFQGYINDCG 2800
2801 EELTSKNEEKTLYMQAGWTELESENGTDASDEYTYKTSEELSTETVSGLL 2850
2851 YSYSGGGYTISMSGTQAEIITLFNKLDSERWIDDHTRAVIIEFSAYNAQI 2900
2901 NYFSVVQLLVEIPKSGIYLPNSWVESVRLIKSEGSDGTVVKYYEMLYIFF 2950
2951 SVLIFVKEIVFYLYGRYKVITTMKPTRNPFKIVYQLALGNFSPWNFMDLI 3000
3001 VGALAVASVLAYTIRQRTTNRAMEDFNANNGNSYINLTEQRNWEIVFSYC 3050
3051 LAGAVFFTSCKMIRILRFNRRIGVLAATLDNALGAIVSFGIAFLFFSMTF 3100
3101 NSVLYAVLGNKMGGYRSLMATFQTALAGMLGKLDVTSIQPISQFAFVVIM 3150
3151 LYMIAGSKLVLQLYVTIIMFEFEEIRNDSEKQTNDYEIIDHIKYKTKRRL 3200
3201 GLLEPKDFAPVSIADTQKDFRLFHSAVAKVNLLHHRATRMLQTQGQYQNQ 3250
3251 TVINYTLSYDPVSAIHETGPKRFQKWRLNDVEKD 3284
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.