 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q09879 from www.uniprot.org...
The NucPred score for your sequence is 0.76 (see score help below)
1 MVTGETLVDSQKSLINNDTLLNEKLKEDFEENVSIDVKIHEELRRALPDY 50
51 EESGFQRFTWHIKSWHELDRRAVSPQFAVGSRQFKITYFPQGTLQSAGFT 100
101 SIFLEYIPSEEEKLSNKYGCCCQFAFVISNPRKPSLSVANSAHCRFSPEI 150
151 VDWGFTQFAELKKLLCRQAPDVPPIVEDGALLLTAYVRILKDPTGVLWHS 200
201 FNDYDSKIATGYVGLKNQGATCYMNSLLQSLYIIHAFRRIVYQIPTDSPQ 250
251 GKDSIAYALQRCFYNLQFMNEPVSTTELTKSFGWDSLDSFMQHDVQEFNR 300
301 VLQDNLERSMRDTKVENALTNLFVGKMKSYIACVNVNFESARSEDYWDIQ 350
351 LNVKGMKNLEDSFRSYIQVETLEGDNCYFADTYGFQEAKKGVIFESFPPI 400
401 LHLQLKRFEYDFERDMMIKINDRYEFPLEFDAKAFLSPEADQSQNCEYVL 450
451 YGVLVHSGDLHNGHYYALLKTEKDGPWYKYDDTRVTRATLREVLEENYGG 500
501 DYIMHPPFRSPVKLKRFMSAYMLLYLRKDKLDELMNPVSADEIPEHLKEA 550
551 LNPSIQLAELRRKERLESHLYTKVQLITPEFYSEHHEFDIADFGNAYKEE 600
601 TIPQFRIKKEAKFSEFIPIVAEKLGYPQECMRFWYVVKRHNCTVRVESPV 650
651 NELNSTMEEVKNVWNSQGEILRLYLEITPENELSSSLTHQNTGEWNAFIF 700
701 VKYFDRKSQEISGCGTLHVNKSDEIRSICPLLCERANLPKNTPLNIYEEI 750
751 KPGMVDFLRLEKTFTQSELSTGDIICFEPCRPSALEDDIVNSGFDSALKL 800
801 YDFLSNKVLVLFRPRFIDQDSIIEFEMLLDRRIKYDDLCIELGQKLGIGA 850
851 DHIRLTTCNPLTYSAGMVVPNDSNITLYEILYSSEEEMPSNVIFYETMDV 900
901 SLSDLDRKRLVRLRWLVDGLANIELVEAYINKSGDINDLFGAVCERFPDS 950
951 DLRKKKVRVYEVFESRYHRDLSLRTLIRTINPAATLVGEVVPLDQLQLYP 1000
1001 EEKIVQVHHFHKDIARIHGIPFSFVIKPQEKFIDTKLRLAARTQYPESIF 1050
1051 SVIKFCVVDFDNNRVVYLNDEDITYDVVEKLNGTLALDRAKKDSKKPNIL 1100
1101 DRAIQMKN 1108
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.