SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q10105 from www.uniprot.org...

The NucPred score for your sequence is 0.75 (see score help below)

   1  MSVEEPGIEAHGHKDRMLYAMLLSKDTSLAFLGSKKIMIDILQHICRTQD    50
51 IDEESAIAALEDIFETLPRNLSRDARKQIEITINHLVSRLPSIVLPFLVR 100
101 RLTTIAGRLDRFRSTVSVSFDCLNWVNSMIPNLPEKELQYWILELLPLQS 150
151 SFLSYALRDGKPSVADSAIKSTRRCYRSLFCKKMDSLKKLVSFLLTETEN 200
201 AILPPKSLPLYGVIISTCYYFHQSPNPRNEISQQAELFSKIMAQNVLMAK 250
251 PALEKYLYHEFCYSLGLLLSVDQLKLYLLPSIEKALLRSPEIIFSGILSS 300
301 LAHGFADSKVDASSLILSSVLTSFVNGLKSSNAEVRRNCFQTFKDLSANA 350
351 SDNESLSRVASELITSLRTGKVTASDQRVLFVDALSSLSLKHIDASMLLN 400
401 ELLPLFTKAKESDFNSLASLIVKTLKFLLMNGRNPGDKIYDFLSKSLQRP 450
451 VAHESMFWLTSLATMAWDLPASDDVQIEFINFFLNNLSILTEKALMSVSG 500
501 ATQNGTYLAPIIYLSFGVNKLSVWNSERISHTLELQDILVKLSTPKNNDV 550
551 FIFSSKITNKLNDDQSKLWYFQGLCDFAKVSDNLLFSNFVERWFQSVIGV 600
601 FSFASRENSNRALKILKSAILYRPHLRMSICSQLWNYHADFEKSKSVGKF 650
651 DSAKYDEISSLFQSLILSSMSADTSNFSNQELVDFDKYLVELLFLSFAFK 700
701 DKFDWIRFCQVSKRDPATLVSERIHSIIEEIELLLSSAIKDSKETAAIAS 750
751 ISMIVFVAPEESIPLFVNVFRNQLLHLNISSVSSTDLEIWKTPEGVLWDN 800
801 VLEKKSSKKLDKNTKDYETKRWEAEVRAKQSAKKPAKLSKDQQALVDAQL 850
851 DAEAKIRSRVNLIALSLERGLGIIRSLGEAVQLAPALWVEDAIDVLLFHN 900
901 VLKYSEPFLKNLAYDTFLLTLKASGFSERLGDRSYSSSLASILAHTFSVN 950
951 SSENIKELTKSILYKLRFAIEQNYFEPQMFACIFPLLYDLTFNITNSDEE 1000
1001 DEAELQLLVTEILEFQALYSASLRRMRSKLIKSLLHLLEIAPTQYQENKN 1050
1051 SLLSLCEGLHSTYTDEELNLLLSNLFHPESSIRSAVLQALQAFDLSRFEF 1100
1101 IKEIFLELYDDNETNASIAHQISTQNGLDATETSFFELQIFFTQDSDYLQ 1150
1151 QIIGKSLIDLLDEFEELGQFIPKELMRTYRENALPSAPEYDEYGIIKKET 1200
1201 IGRDLGRIARESVAVSFFHISKYLSSNLLLPFLEFLLTASEAEAQIPVTD 1250
1251 ASQKVSSKMLEAGKLAIFQSGAHQVEALMELFEQKLNVDSLPTDANDRLR 1300
1301 EATVVLFGTVAQHLPSNDPRLAVVMDSLLSVLSTPSESVQLAVAVCLPPL 1350
1351 VKKSLGKSKEYYELLSNKLMNSTSLADQKGAAYGLAGLVKGYGIKAFQDF 1400
1401 NILDSLSELISNRQNATHRQVALFAVEAFSRILGIYFEPYLPDLLPLLLT 1450
1451 SFGDNANEVREATMDAVKQIMSQLSAFGVKLLLPTLLDGLNEYNWRSKKA 1500
1501 SVEILGLMSYMAPKQLSVFLPTIIPKLSEVLTDSHSQVRNTANKSLLRFG 1550
1551 DVISNPEIQTLVPTLLKALSDCTRYTDDALEALLKTSFVHYLDPPSLALV 1600
1601 IPILKYGLRERNAGTKRQSAKIFGLMASLTEPENLAVYLESLMPRLREVL 1650
1651 IDPVPDTRATAAKALGSLIEKLGEKKFPTLIPELFNVLRSECSEVDRQGA 1700
1701 AQGLSEILAGLGLARLEDVLPEILKNTSSPVPHIRESFISLLIYLPATFG 1750
1751 SRFQPYLARAIPPILSGLADDSELVQTASLRAAKMIVNNYATKSVDLLLP 1800
1801 ELEKGLFDNAWRIRLSSVQLVGDLVFKLAGINRKALQEDEEEEGTHSDVS 1850
1851 RKALLDIIGQERHDRILSTLYIVRQDIAAVVRTPAIQIWKAIVVNTPRTV 1900
1901 REILPTLTSIIVSNLNSSSNDRRTMCVKSLGDLLKKAGFDVLPQLLPVLK 1950
1951 QGLESANSGDRIGVCIALEELINSATPEQLEIYSDDFVYAVRRALMDGDL 2000
2001 EVRETAAEAFDSLQSILGDRAVDDVLPQLLKLLESENQSEQALSALREII 2050
2051 SRRSSTIFPVLIPTLIKKPVSAFNARALSSLAQVAGVTLNKRLPSILNAL 2100
2101 MESSLASTGDDLVALNGAIDKVNLSVKDQEGLQILMAHFYSFSESEDFRK 2150
2151 RLFAAEHMLVFFQNCKLDYYRYVGDWVRHFITLFEDKSQDVVVAAVAAQN 2200
2201 TLVSALRKDQLDSLVSIAYHSLRDVGSQGVNLPAFEVAQGVNSILPIFLY 2250
2251 GLMHGTMDQREQSALGIADIVLKTEPSKLRPFVTQITGPLIRIIGERFPV 2300
2301 EVKCAILYTLNIILSKISTFLRPFLPQLQRTFAKCLGDPSSEVIRSRAAT 2350
2351 ALGTLITLQTRLAPIITELVSGARTPDAGVRKAMLNALFAVVSKSGQNMN 2400
2401 EASAEAIEQLLDEISAESSEHMVICAKLYGALFSHLPDAQAKQLLESKVL 2450
2451 SLEIQSEFSVLILNAAVKFGSQKIIELKLSDIVCSIISTASLQKEVTIAE 2500
2501 NGILALGKALLADIPQSFGNAKNLVEALKVNIEAPPSTSQDSRRLALLII 2550
2551 RVVSKENYSLIKPHISILAPAIFGCVRAIVIPVKLAAEAAFLALFQLVED 2600
2601 DSVLNKYIETLEGPRARSFVDYSRRVAVKLAAAERDRINSGSERVKLEEV 2650
2651 EDLAEINAVGRDNEVSTNDP 2670

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.