SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q10411 from www.uniprot.org...

The NucPred score for your sequence is 0.86 (see score help below)

   1  MSNQSSSGSNTSDLDEESASSLVSSAASPFIDSDLETPRPNISRASTGQL    50
51 AEDGDTSSQHEDSSEELKRQEVRGMRRHSDLSIDAKLGSSEGSTASSALP 100
101 LTPRSPSNASWLLVRGGLLDSPILDINSVTQKSNLLNELKQVRSKLAALE 150
151 HENGILSLQLSSSNKKDKNTSSVTTLTSEEDVSYFQKKLTNMESNFSAKQ 200
201 SEAYDLSRQLLTVTEKLDKKEKDYEKIKEDVSSIKASLAEEQASNKSLRG 250
251 EQERLEKLLVSSNKTVSTLRQTENSLRAECKTLQEKLEKCAINEEDSKLL 300
301 EELKHNVANYSDAIVHKDKLIEDLSTRISEFDNLKSERDTLSIKNEKLEK 350
351 LLRNTIGSLKDSRTSNSQLEEEMVELKESNRTIHSQLTDAESKLSSFEQE 400
401 NKSLKGSIDEYQNNLSSKDKMVKQVSSQLEEARSSLAHATGKLAEINSER 450
451 DFQNKKIKDFEKIEQDLRACLNSSSNELKEKSALIDKKDQELNNLREQIK 500
501 EQKKVSESTQSSLQSLQRDILNEKKKHEVYESQLNELKGELQTEISNSEH 550
551 LSSQLSTLAAEKEAAVATNNELSESKNSLQTLCNAFQEKLAKSVMQLKEN 600
601 EQNFSSLDTSFKKLNESHQELENNHQTITKQLKDTSSKLQQLQLERANFE 650
651 QKESTLSDENNDLRTKLLKLEESNKSLIKKQEDVDSLEKNIQTLKEDLRK 700
701 SEEALRFSKLEAKNLREVIDNLKGKHETLEAQRNDLHSSLSDAKNTNAIL 750
751 SSELTKSSEDVKRLTANVETLTQDSKAMKQSFTSLVNSYQSISNLYHELR 800
801 DDHVNMQSQNNTLLESESKLKTDCENLTQQNMTLIDNVQKLMHKHVNQES 850
851 KVSELKEVNGKLSLDLKNLRSSLNVAISDNDQILTQLAELSKNYDSLEQE 900
901 SAQLNSGLKSLEAEKQLLHTENEELHIRLDKLTGKLKIEESKSSDLGKKL 950
951 TARQEEISNLKEENMSQSQAITSVKSKLDETLSKSSKLEADIEHLKNKVS 1000
1001 EVEVERNALLASNERLMDDLKNNGENIASLQTEIEKKRAENDDLQSKLSV 1050
1051 VSSEYENLLLISSQTNKSLEDKTNQLKYIEKNVQKLLDEKDQRNVELEEL 1100
1101 TSKYGKLGEENAQIKDELLALRKKSKKQHDLCANFVDDLKEKSDALEQLT 1150
1151 NEKNELIVSLEQSNSNNEALVEERSDLANRLSDMKKSLSDSDNVISVIRS 1200
1201 DLVRVNDELDTLKKDKDSLSTQYSEVCQDRDDLLDSLKGCEESFNKYAVS 1250
1251 LRELCTKSEIDVPVSEILDDNFVFNAGNFSELSRLTVLSLENYLDAFNQV 1300
1301 NFKKMELDNRLTTTDAEFTKVVADLEKLQHEHDDWLIQRGDLEKALKDSE 1350
1351 KNFLRKEAEMTENIHSLEEGKEETKKEIAELSSRLEDNQLATNKLKNQLD 1400
1401 HLNQEIRLKEDVLKEKESLIISLEESLSNQRQKESSLLDAKNELEHMLDD 1450
1451 TSRKNSSLMEKIESINSSLDDKSFELASAVEKLGALQKLHSESLSLMENI 1500
1501 KSQLQEAKEKIQVDESTIQELDHEITASKNNYEGKLNDKDSIIRDLSENI 1550
1551 EQLNNLLAEEKSAVKRLSTEKESEILQFNSRLADLEYHKSQVESELGRSK 1600
1601 LKLASTTEELQLAENERLSLTTRMLDLQNQVKDLSNIKDSLSEDLRTLRS 1650
1651 LEDSVASLQKECKIKSNTVESLQDVLTSVQARNAELEDEVSRSVDKIRRR 1700
1701 DDRCEHLSGKLKKLHSQLEEQHETFFRAEQQRMTQLGFLKETVKKQEKLL 1750
1751 KKLNLRQEQLIPRSSILVYESYIRDIEKEIIVLQERLNGIELSQQLPKGY 1800
1801 FGYFFKTNRVEMEVLDSFKQQVAKLQFLAGAEFIVKFKEDLEKCAAEEKE 1850
1851 KQATFDNYSEKVENLGKSIEALYFALNREISFRKSLALSKSAYHNLLVRD 1900
1901 SPKFNPDSQITYSIPVTNTKQSLLRSAILCVISLQRLRLLGQRHSFCEEV 1950
1951 IENLSCV 1957

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.