SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q10475 from www.uniprot.org...

The NucPred score for your sequence is 0.94 (see score help below)

   1  MSSKPPSNTPKFSYARALASSQSNKSNSTKASENNTATAEKQAVKPSGVE    50
51 PTNTSRANAQKKTESTGKITSEADTEKYNSSKSPVNKEGSVEKKSSEKSS 100
101 TNNKPWRGDNTSKPSANSSAERTSSQHQKPETSSQIGKDNAAPVENVNEK 150
151 STSQETAPPVSTVPIQFGSITRNAAIPSKPKVSGNMQNKSGVSSYSSKSQ 200
201 SVNSSVTSNPPHTEEPVAAKPEASSTATKGPRPTTSASNTNTSPANGAPT 250
251 NKPSTDINTTDPATQTTQVSASNSPALSGSSTPSNTSSRSNRQNHGNFSE 300
301 KRHYDRYGNSHPSYNKYSHYQHGFNYNNSGNNRNESGHPRFRNSRRNYNN 350
351 QGAYPTYMSNGRSANQSPRNNPQNVNNGSTPIQIPVSLQTPYGQVYGQPQ 400
401 YIVDPNMVQYGPILQPGYVPQYYPVYHQTPYTQNFPNMSRSGSQVSDQVV 450
451 ESPNSSTLSPRNGFAPIVKQQKKSSALKIVNPVTHTEVVVPQKNASSPNP 500
501 SETNSRAETPTAAPPQISEEEASQRKDAIKLAIQQRIQEKAEAEAKRKAE 550
551 EKARLEAEENAKREAEEQAKREAEEKAKREAEEKAKREAEEKAKREAEEN 600
601 AKREAEEKAKREAEEKAKREAEEKAKREAEEKAKREAEEKAKREAEEKAK 650
651 REAEEKAKREAEENAKREAEEKAKREAEENAKREAEEKVKRETEENAKRK 700
701 AEEEGKREADKNPEIKSSAPLASSEANVDTSKQTNATEPEVVDKTKVEKL 750
751 KASEGKSTSSLSSPSHSTSSKRDLLSGLESLSLKTNPKSEQCLESLLNSQ 800
801 FITDFSALVYPSTIKPPSTEEALKAGKYEYDVPFLLQFQSVYTDKPMKGW 850
851 DERMKETVASAFSDKSSRGMYSSSRQSSRSGSNTHSHAGPGFGGPSERKG 900
901 ISRLGIDRGFSSSGAGFGSGSNYKSAPSRGVSHHGHGGMSGSHRGSQRGS 950
951 RRGGGERDKPDPSSLTIPVDQVAPLQLSANRWQPKKLTEKPAETKGEDEE 1000
1001 ALLPPEVVQRKVKGSLNKMTLEKFDKISDQILEIAMQSRKENDGRTLKQV 1050
1051 IQLTFEKATDEPNFSNMYARFARKMMDSIDDSIRDEGVLDKNNQPVRGGL 1100
1101 LFRKYLLSRCQEDFERGWKANLPSGKAGEAEIMSDEYYVAAAIKRRGLGL 1150
1151 VRFIGELFKLSMLSEKIMHECIKRLLGNVTDPEEEEIESLCRLLMTVGVN 1200
1201 IDATEKGHAAMDVYVLRMETITKIPNLPSRIKFMLMDVMDSRKNGWAVKN 1250
1251 EVEKGPKTIAEIHEEAERKKALAESQRPSSGRMHGRDMNRGDSRMGGRGS 1300
1301 NPPFSSSDWSNNKDGYARLGQGIRGLKSGTQGSHGPTSLSSMLKGGSVSR 1350
1351 TPSRQNSALRREQSVRAPPSNVAVTSANSFELLEEHDHDNDGGQKDSNSK 1400
1401 TSS 1403

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.