SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q12150 from www.uniprot.org...

The NucPred score for your sequence is 0.71 (see score help below)

   1  MEAISQLRGVPLTHQKDFSWVFLVDWILTVVVCLTMIFYMGRIYAYLVSF    50
51 ILEWLLWKRAKIKINVETLRVSLLGGRIHFKNLSVIHKDYTISVLEGSLT 100
101 WKYWLLNCRKAELIENNKSSSGKKAKLPCKISVECEGLEIFIYNRTVAYD 150
151 NVINLLSKDERDKFEKYLNEHSFPEPFSDGSSADKLDEDLSESAYTTNSD 200
201 ASIVNDRDYQETDIGKHPKLLMFLPIELKFSRGSLLLGNKFTPSVMILSY 250
251 ESGKGIIDVLPPKERLDLYRNKTQMEFKNFEISIKQNIGYDDAIGLKFKI 300
301 DRGKVSKLWKTFVRVFQIVTKPVVPKKTKKSAGTSDDNFYHKWKGLSLYK 350
351 ASAGDAKASDLDDVEFDLTNHEYAKFTSILKCPKVTIAYDVDVPGVVPHG 400
401 AHPTIPDIDGPDVGNNGAPPDFALDVQIHGGSICYGPWAQRQVSHLQRVL 450
451 SPVVSRTAKPIKKLPPGSRRIYTLFRMNISIMEDTTWRIPTRESSKDPEF 500
501 LKHYKETNEEYRPFGWMDLRFCKDTYANFNISVCPTVQGFQNNFHVHFLE 550
551 TEIRSSVNHDILLKSKVFDIDGDIGYPLGWNSKAIWIINMKSEQLEAFLL 600
601 REHITLVADTLSDFSAGDPTPYELFRPFVYKVNWEMEGYSIYLNVNDHNI 650
651 VNNPLDFNENCYLSLHGDKLSIDVTVPRESILGTYTDMSYEISTPMFRMM 700
701 LNTPPWNTLNEFMKHKEVGRAYDFTIKGSYLLYSELDIDNVDTLVIECNS 750
751 KSTVLHCYGFVMRYLTNVKMNYFGEFFNFVTSEEYTGVLGAREVGDVTTK 800
801 SSVADLASTVDSGYQNSSLKNESEDKGPMKRSDLKRTTNETDIWFTFSVW 850
851 DGALILPETIYSFDPCIALHFAELVVDFRSCNYYMDIMAVLNGTSIKRHV 900
901 SKQINEVFDFIRRNNGADEQEHGLLSDLTIHGHRMYGLPPTEPTYFCQWD 950
951 INLGDLCIDSDIEFIKGFFNSFYKIGFGYNDLENILLYDTETINDMTSLT 1000
1001 VHVEKIRIGLKDPVMKSQSVISAESILFTLIDFENEKYSQRIDVKIPKLT 1050
1051 ISLNCVMGDGVDTSFLKFETKLRFTNFEQYKDIDKKRSEQRRYITIHDSP 1100
1101 YHRCPFLLPLFYQDSDTYQNLYGAIAPSSSIPTLPLPTLPDTIDYIIEDI 1150
1151 VGEYATLLETTNPFKNIFAETPSTMEPSRASFSEDDNDEEADPSSFKPVA 1200
1201 FTEDRNHERDNYVVDVSYILLDVDPLLFIFAKSLLEQLYSENMVQVLDDI 1250
1251 EIGIVKRLSNLQEGITSISNIDIHIAYLNLIWQETGEEGFELYLDRIDYQ 1300
1301 MSEKSLEKNRTNKLLEVAALAKVKTVRVTVNQKKNPDLSEDRPPALSLGI 1350
1351 EGFEVWSSTEDRQVNSLNLTSSDITIDESQMEWLFEYCSDQGNLIQEVCT 1400
1401 SFNSIQNTRSNSKTELISKLTAASEYYQISHDPYVITKPAFIMRLSKGHV 1450
1451 RENRSWKIITRLRHILTYLPDDWQSNIDEVLKEKKYTSAKDAKNIFMSVF 1500
1501 STWRNWEFSDVARSYIYGKLFTAENEKHKQNLIKKLLKCTMGSFYLTVYG 1550
1551 EGYEVEHNFVVADANLVVDLTPPVTSLPSNREETIEITGRVGSVKGKFSD 1600
1601 RLLKLQDLIPLIAAVGEDDKSDPKKELSKQFKMNTVLLVDKSELQLVMDQ 1650
1651 TKLMSRTVGGRVSLLWENLKDSTSQAGSLVIFSQKSEVWLKHTSVILGEA 1700
1701 QLRDFSVLATTEAWSHKPTILINNQCADLHFRAMSSTEQLVTAITEIRES 1750
1751 LMMIKERIKFKPKSKKKSQFVDQKINTVLSCYFSNVSSEVMPLSPFYIRH 1800
1801 EAKQLDIYFNKFGSNEILLSIWDTDFFMTSHQTKEQYLRFSFGDIEIKGG 1850
1851 ISREGYSLINVDISISMIKLTFSEPRRIVNSFLQDEKLASQGINLLYSLK 1900
1901 PLFFSSNLPKKEKQAPSIMINWTLDTSITYFGVLVPVASTYFVFELHMLL 1950
1951 LSLTNTNNGMLPEETKVTGQFSIENILFLIKERSLPIGLSKLLDFSIKVS 2000
2001 TLQRTVDTEQSFQVESSHFRVCLSPDSLLRLMWGAHKLLDLSHYYSRRHA 2050
2051 PNIWNTKMFTGKSDKSKEMPINFRSIHILSYKFCIGWIFQYGAGSNPGLM 2100
2101 LGYNRLFSAYEKDFGKFTVVDAFFSVANGNTSSTFFSEGNEKDKYNRSFL 2150
2151 PNMQISYWFKRCGELKDWFFRFHGEALDVNFVPSFMDVIESTLQSMRAFQ 2200
2201 ELKKNILDVSESLRAENDNSYASTSVESASSSLAPFLDNIRSVNSNFKYD 2250
2251 GGVFRVYTYEDIETKSEPSFEIKSPVVTINCTYKHDEDKVKPHKFRTLIT 2300
2301 VDPTHNTLYAGCAPLLMEFSESLQKMIKKHSTDEKPNFTKPSSQNVDYKR 2350
2351 LLDQFDVAVKLTSAKQQLSLSCEPKAKVQADVGFESFLFSMATNEFDSEQ 2400
2401 PLEFSLTLEHTKASIKHIFSREVSTSFEVGFMDLTLLFTHPDVISMYGTG 2450
2451 LVSDLSVFFNVKQLQNLYLFLDIWRFSSILHTRPVQRTVNKEIEMSSLTS 2500
2501 TNYADAGTEIPWCFTLIFTNVSGDVDLGPSLGMISLRTQRTWLATDHYNE 2550
2551 KRQLLHAFTDGISLTSEGRLSGLFEVANASWLSEVKWPPEKSKNTHPLVS 2600
2601 TSLNIDDIAVKAAFDYHMFLIGTISNIHFHLHNEKDAKGVLPDLLQVSFS 2650
2651 SDEIILSSTALVVANILDIYNTIVRMRQDNKISYMETLRDSNPGESRQPI 2700
2701 LYKDILRSLKLLRTDLSVNISSSKVQISPISLFDVEVLVIRIDKVSIRSE 2750
2751 THSGKKLKTDLQLQVLDVSAALSTSKEELDEEVGASIAIDDYMHYASKIV 2800
2801 GGTIIDIPKLAVHMTTLQEEKTNNLEYLFACSFSDKISVRWNLGPVDFIK 2850
2851 EMWTTHVKALAVRRSQVANISFGQTEEELEESIKKEEAASKFNYIALEEP 2900
2901 QIEVPQIRDLGDATPPMEWFGVNRKKFPKFTHQTAVIPVQKLVYLAEKQY 2950
2951 VKILDDTH 2958

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.