| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q12267 from www.uniprot.org...
The NucPred score for your sequence is 0.98 (see score help below)
1 MSDSPLSKRQKRKSAQEPELSLDQGDAEEDSQVENRVNLSENTPEPDLPA 50
51 LEASYSKSYTPRKLVLSSGENRYAFSQPTNSTTTSLHVPNLQPPKTSSRG 100
101 RDHKSYSQSPPRSPGRSPTRRLELLQLSPVKNSRVELQKIYDRHQSSSKQ 150
151 QSRLFINELVLENFKSYAGKQVVGPFHTSFSAVVGPNGSGKSNVIDSMLF 200
201 VFGFRANKMRQDRLSDLIHKSEAFPSLQSCSVAVHFQYVIDESSGTSRID 250
251 EEKPGLIITRKAFKNNSSKYYINEKESSYTEVTKLLKNEGIDLDHKRFLI 300
301 LQGEVENIAQMKPKAEKESDDGLLEYLEDIIGTANYKPLIEERMGQIENL 350
351 NEVCLEKENRFEIVDREKNSLESGKETALEFLEKEKQLTLLRSKLFQFKL 400
401 LQSNSKLASTLEKISSSNKDLEDEKMKFQESLKKVDEIKAQRKEIKDRIS 450
451 SCSSKEKTLVLERRELEGTRVSLEERTKNLVSKMEKAEKTLKSTKHSISE 500
501 AENMLEELRGQQTEHETEIKDLTQLLEKERSILDDIKLSLKDKTKNISAE 550
551 IIRHEKELEPWDLQLQEKESQIQLAESELSLLEETQAKLKKNVETLEEKI 600
601 LAKKTHKQELQDLILDLKKKLNSLKDERSQGEKNFTSAHLKLKEMQKVLN 650
651 AHRQRAMEARSSLSKAQNKSKVLTALSRLQKSGRINGFHGRLGDLGVIDD 700
701 SFDVAISTACPRLDDVVVDTVECAQHCIDYLRKNKLGYARFILLDRLRQF 750
751 NLQPISTPENVPRLFDLVKPKNPKFSNAFYSVLRDTLVAQNLKQANNVAY 800
801 GKKRFRVVTVDGKLIDISGTMSGGGNHVAKGLMKLGTNQSDKVDDYTPEE 850
851 VDKIERELSERENNFRVASDTVHEMEEELKKLRDHEPDLESQISKAEMEA 900
901 DSLASELTLAEQQVKEAEMAYVKAVSDKAQLNVVMKNLERLRGEYNDLQS 950
951 ETKTKKEKIKGLQDEIMKIGGIKLQMQNSKVESVCQKLDILVAKLKKVKS 1000
1001 ASKKSGGDVVKFQKLLQNSERDVELSSDELKVIEEQLKHTKLALAENDTN 1050
1051 MNETLNLKVELKEQSEQLKEQMEDMEESINEFKSIEIEMKNKLEKLNSLL 1100
1101 TYIKSEITQQEKGLNELSIRDVTHTLGMLDDNKMDSVKEDVKNNQELDQE 1150
1151 YRSCETQDESEIKDAETSCDNYHPMNIDETSDEVSRGIPRLSEDELRELD 1200
1201 VELIESKINELSYYVEETNVDIGVLEEYARRLAEFKRRKLDLNNAVQKRD 1250
1251 EVKEQLGILKKKRFDEFMAGFNIISMTLKEMYQMITMGGNAELELVDSLD 1300
1301 PFSEGVTFSVMPPKKSWRNITNLSGGEKTLSSLALVFALHKYKPTPLYVM 1350
1351 DEIDAALDFRNVSIVANYIKERTKNAQFIVISLRNNMFELAQQLVGVYKR 1400
1401 DNRTKSTTIKNIDILNRT 1418
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.