SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q12674 from www.uniprot.org...

The NucPred score for your sequence is 0.90 (see score help below)

   1  MGIADGQRRRSSSLRTQMFNKHLYDKYRGRTDDEIELEDINESKTFSGSD    50
51 NNDKDDRDETSGNYAAEEDYEMEEYGSPDVSYSIITKILDTILDRRRTFH 100
101 SKDGRHIPIILDHNAIEYKQAATKRDGHLIDERFNKPYCDNRITSSRYTF 150
151 YSFLPRQLYAQFSKLANTYFFIVAVLQMIPGWSTTGTYTTIIPLCVFMGI 200
201 SMTREAWDDFRRHRLDKEENNKPVGVLVKDGNNDAQEVYTLPSSVVSSTA 250
251 YLTKSAAAENNPPLNDDRNSSQGHFLDTHFNNFELLKNKYNVHIHQKKWE 300
301 KLRVGDFVLLTQDDWVPADLLLLTCDGENSECFVETMALDGETNLKSKQP 350
351 HPELNKLTKAASGLANINAQVTVEDPNIDLYNFEGNLELKNHRNDTIMKY 400
401 PLGPDNVIYRGSILRNTQNVVGMVIFSGEETKIRMNALKNPRTKAPKLQR 450
451 KINMIIVFMVFVVATISLFSYLGHVLHKKKYIDQNKAWYLFQADAGVAPT 500
501 IMSFIIMYNTVIPLSLYVTMEIIKVVQSKMMEWDIDMYHAETNTPCESRT 550
551 ATILEELGQVSYIFSDKTGTLTDNKMIFRKFSLCGSSWLHNVDLGNSEDN 600
601 FEDNRDNTNSLRLPPKAHNGSSIDVVSIGDQNVLDRLGFSDAPIEKGHRP 650
651 SLDNFPKSRNSIEYKGNSSAIYTGRPSMRSLFGKDNSHLSKQASVISPSE 700
701 TFSENIKSSFDLIQFIQRYPTALFSQKAKFFFLSLALCHSCLPKKTHNES 750
751 IGEDSIEYQSSSPDELALVTAARDLGYIVLNRNAQILTIKTFPDGFDGEA 800
801 KLENYEILNYIDFNSQRKRMSVLVRMPNQPNQVLLICKGADNVIMERLHD 850
851 RELAAKKMADICTSTKERKDAEAELVLQQRKSLERMVDEEAMARTSLRNS 900
901 LSSVPRASLSLQAVRKSLSMKNSRTRDPEKQIDSIDQFLETVKKSDQEIG 950
951 SVVNKSRKSLHKQQIEKYGPRISIDGTHFPNNNVPIDTRKEGLQHDYDTE 1000
1001 ILEHIGSDELILNEEYVIERTLQAIDEFSTEGLRTLVYAYKWIDIGQYEN 1050
1051 WNKRYHQAKTSLTDRKIKVDEAGAEIEDGLNLLGVTAIEDKLQDGVSEAI 1100
1101 EKIRRAGIKMWMLTGDKRETAINIGYSCMLIKDYSTVVILTTTDENIISK 1150
1151 MNAVSQEVDSGNIAHCVVVIDGATMAMFEGNPTYMSVFVELCTKTDSVIC 1200
1201 CRASPSQKALMVSNIRNTDPNLVTLAIGDGANDIAMIQSADIGVGIAGKE 1250
1251 GLQASRVSDYSIGQFRFLLKLLFVHGRYNYIRTSKFMLCTFYKEITFYFT 1300
1301 QLIYQRYTMFSGSSLYEPWSLSMFNTLFTSLPVLCIGMFEKDLKPMTLLT 1350
1351 VPELYSYGRLSQGFNWLIFMEWVILATTNSLIITFLNVVMWGMSSLSDNT 1400
1401 MYPLGLINFTAIVALINVKSQFVEMHNRNWLAFTSVVLSCGGWLVWCCAL 1450
1451 PILNNTDQIYDVAYGFYNHFGKDITFWCTSLVLALLPITLDIVYKTFKVM 1500
1501 IWPSDSDIFAELEQKSDIRKKLELGAYSEMRQGWTWDKDPSTFTRYTDKV 1550
1551 LSRPRTNSRASAKTHNSSIYSMSNGNVDHSSKKNFFGNSSKKSSERYEVL 1600
1601 PSGKLIKRPSLKTQSSKDSIGGNITTKLTKKLKLPSRNVEDEDVNQIIQA 1650
1651 RLKDLE 1656

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.