 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q12830 from www.uniprot.org...
The NucPred score for your sequence is 0.99 (see score help below)
1 MRGRRGRPPKQPAAPAAERCAPAPPPPPPPPTSGPIGGLRSRHRGSSRGR 50
51 WAAAQAEVAPKTRLSSPRGGSSSRRKPPPPPPAPPSTSAPGRGGRGGGGG 100
101 RTGGGGGGGHLARTTAARRAVNKVVYDDHESEEEEEEEDMVSEEEEEEDG 150
151 DAEETQDSEDDEEDEMEEDDDDSDYPEEMEDDDDDASYCTESSFRSHSTY 200
201 SSTPGRRKPRVHRPRSPILEEKDIPPLEFPKSSEDLMVPNEHIMNVIAIY 250
251 EVLRNFGTVLRLSPFRFEDFCAALVSQEQCTLMAEMHVVLLKAVLREEDT 300
301 SNTTFGPADLKDSVNSTLYFIDGMTWPEVLRVYCESDKEYHHVLPYQEAE 350
351 DYPYGPVENKIKVLQFLVDQFLTTNIAREELMSEGVIQYDDHCRVCHKLG 400
401 DLLCCETCSAVYHLECVKPPLEEVPEDEWQCEVCVAHKVPGVTDCVAEIQ 450
451 KNKPYIRHEPIGYDRSRRKYWFLNRRLIIEEDTENENEKKIWYYSTKVQL 500
501 AELIDCLDKDYWEAELCKILEEMREEIHRHMDITEDLTNKARGSNKSFLA 550
551 AANEEILESIRAKKGDIDNVKSPEETEKDKNETENDSKDAEKNREEFEDQ 600
601 SLEKDSDDKTPDDDPEQGKSEEPTEVGDKGNSVSANLGDNTTNATSEETS 650
651 PSEGRSPVGCLSETPDSSNMAEKKVASELPQDVPEEPNKTCESSNTSATT 700
701 TSIQPNLENSNSSSELNSSQSESAKAADDPENGERESHTPVSIQEEIVGD 750
751 FKSEKSNGELSESPGAGKGASGSTRIITRLRNPDSKLSQLKSQQVAAAAH 800
801 EANKLFKEGKEVLVVNSQGEISRLSTKKEVIMKGNINNYFKLGQEGKYRV 850
851 YHNQYSTNSFALNKHQHREDHDKRRHLAHKFCLTPAGEFKWNGSVHGSKV 900
901 LTISTLRLTITQLENNIPSSFLHPNWASHRANWIKAVQMCSKPREFALAL 950
951 AILECAVKPVVMLPIWRESLGHTRLHRMTSIEREEKEKVKKKEKKQEEEE 1000
1001 TMQQATWVKYTFPVKHQVWKQKGEEYRVTGYGGWSWISKTHVYRFVPKLP 1050
1051 GNTNVNYRKSLEGTKNNMDENMDESDKRKCSRSPKKIKIEPDSEKDEVKG 1100
1101 SDAAKGADQNEMDISKITEKKDQDVKELLDSDSDKPCKEEPMEVDDDMKT 1150
1151 ESHVNCQESSQVDVVNVSEGFHLRTSYKKKTKSSKLDGLLERRIKQFTLE 1200
1201 EKQRLEKIKLEGGIKGIGKTSTNSSKNLSESPVITKAKEGCQSDSMRQEQ 1250
1251 SPNANNDQPEDLIQGCSESDSSVLRMSDPSHTTNKLYPKDRVLDDVSIRS 1300
1301 PETKCPKQNSIENDIEEKVSDLASRGQEPSKSKTKGNDFFIDDSKLASAD 1350
1351 DIGTLICKNKKPLIQEESDTIVSSSKSALHSSVPKSTNDRDATPLSRAMD 1400
1401 FEGKLGCDSESNSTLENSSDTVSIQDSSEEDMIVQNSNESISEQFRTREQ 1450
1451 DVEVLEPLKCELVSGESTGNCEDRLPVKGTEANGKKPSQQKKLEERPVNK 1500
1501 CSDQIKLKNTTDKKNNENRESEKKGQRTSTFQINGKDNKPKIYLKGECLK 1550
1551 EISESRVVSGNVEPKVNNINKIIPENDIKSLTVKESAIRPFINGDVIMED 1600
1601 FNERNSSETKSHLLSSSDAEGNYRDSLETLPSTKESDSTQTTTPSASCPE 1650
1651 SNSVNQVEDMEIETSEVKKVTSSPITSEEESNLSNDFIDENGLPINKNEN 1700
1701 VNGESKRKTVITEVTTMTSTVATESKTVIKVEKGDKQTVVSSTENCAKST 1750
1751 VTTTTTTVTKLSTPSTGGSVDIISVKEQSKTVVTTTVTDSLTTTGGTLVT 1800
1801 SMTVSKEYSTRDKVKLMKFSRPKKTRSGTALPSYRKFVTKSSKKSIFVLP 1850
1851 NDDLKKLARKGGIREVPYFNYNAKPALDIWPYPSPRPTFGITWRYRLQTV 1900
1901 KSLAGVSLMLRLLWASLRWDDMAAKAPPGGGTTRTETSETEITTTEIIKR 1950
1951 RDVGPYGIRSEYCIRKIICPIGVPETPKETPTPQRKGLRSSALRPKRPET 2000
2001 PKQTGPVIIETWVAEEELELWEIRAFAERVEKEKAQAVEQQAKKRLEQQK 2050
2051 PTVIATSTTSPTSSTTSTISPAQKVMVAPISGSVTTGTKMVLTTKVGSPA 2100
2101 TVTFQQNKNFHQTFATWVKQGQSNSGVVQVQQKVLGIIPSSTGTSQQTFT 2150
2151 SFQPRTATVTIRPNTSGSGGTTSNSQVITGPQIRPGMTVIRTPLQQSTLG 2200
2201 KAIIRTPVMVQPGAPQQVMTQIIRGQPVSTAVSAPNTVSSTPGQKSLTSA 2250
2251 TSTSNIQSSASQPPRPQQGQVKLTMAQLTQLTQGHGGNQGLTVVIQGQGQ 2300
2301 TTGQLQLIPQGVTVLPGPGQQLMQAAMPNGTVQRFLFTPLATTATTASTT 2350
2351 TTTVSTTAAGTGEQRQSKLSPQMQVHQDKTLPPAQSSSVGPAEAQPQTAQ 2400
2401 PSAQPQPQTQPQSPAQPEVQTQPEVQTQTTVSSHVPSEAQPTHAQSSKPQ 2450
2451 VAAQSQPQSNVQGQSPVRVQSPSQTRIRPSTPSQLSPGQQSQVQTTTSQP 2500
2501 IPIQPHTSLQIPSQGQPQSQPQVQSSTQTLSSGQTLNQVTVSSPSRPQLQ 2550
2551 IQQPQPQVIAVPQLQQQVQVLSQIQSQVVAQIQAQQSGVPQQIKLQLPIQ 2600
2601 IQQSSAVQTHQIQNVVTVQAASVQEQLQRVQQLRDQQQKKKQQQIEIKRE 2650
2651 HTLQASNQSEIIQKQVVMKHNAVIEHLKQKKSMTPAEREENQRMIVCNQV 2700
2701 MKYILDKIDKEEKQAAKKRKREESVEQKRSKQNATKLSALLFKHKEQLRA 2750
2751 EILKKRALLDKDLQIEVQEELKRDLKIKKEKDLMQLAQATAVAAPCPPVT 2800
2801 PAPPAPPAPPPSPPPPPAVQHTGLLSTPTLPAASQKRKREEEKDSSSKSK 2850
2851 KKKMISTTSKETKKDTKLYCICKTPYDESKFYIGCDRCQNWYHGRCVGIL 2900
2901 QSEAELIDEYVCPQCQSTEDAMTVLTPLTEKDYEGLKRVLRSLQAHKMAW 2950
2951 PFLEPVDPNDAPDYYGVIKEPMDLATMEERVQRRYYEKLTEFVADMTKIF 3000
3001 DNCRYYNPSDSPFYQCAEVLESFFVQKLKGFKASRSHNNKLQSTAS 3046
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.