SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q12955 from www.uniprot.org...

The NucPred score for your sequence is 0.96 (see score help below)

   1  MAHAASQLKKNRDLEINAEEEPEKKRKHRKRSRDRKKKSDANASYLRAAR    50
51 AGHLEKALDYIKNGVDINICNQNGLNALHLASKEGHVEVVSELLQREANV 100
101 DAATKKGNTALHIASLAGQAEVVKVLVTNGANVNAQSQNGFTPLYMAAQE 150
151 NHLEVVKFLLDNGASQSLATEDGFTPLAVALQQGHDQVVSLLLENDTKGK 200
201 VRLPALHIAARKDDTKAAALLLQNDNNADVESKSGFTPLHIAAHYGNINV 250
251 ATLLLNRAAAVDFTARNDITPLHVASKRGNANMVKLLLDRGAKIDAKTRD 300
301 GLTPLHCGARSGHEQVVEMLLDRAAPILSKTKNGLSPLHMATQGDHLNCV 350
351 QLLLQHNVPVDDVTNDYLTALHVAAHCGHYKVAKVLLDKKANPNAKALNG 400
401 FTPLHIACKKNRIKVMELLLKHGASIQAVTESGLTPIHVAAFMGHVNIVS 450
451 QLMHHGASPNTTNVRGETALHMAARSGQAEVVRYLVQDGAQVEAKAKDDQ 500
501 TPLHISARLGKADIVQQLLQQGASPNAATTSGYTPLHLSAREGHEDVAAF 550
551 LLDHGASLSITTKKGFTPLHVAAKYGKLEVANLLLQKSASPDAAGKSGLT 600
601 PLHVAAHYDNQKVALLLLDQGASPHAAAKNGYTPLHIAAKKNQMDIATTL 650
651 LEYGADANAVTRQGIASVHLAAQEGHVDMVSLLLGRNANVNLSNKSGLTP 700
701 LHLAAQEDRVNVAEVLVNQGAHVDAQTKMGYTPLHVGCHYGNIKIVNFLL 750
751 QHSAKVNAKTKNGYTPLHQAAQQGHTHIINVLLQNNASPNELTVNGNTAL 800
801 GIARRLGYISVVDTLKIVTEETMTTTTVTEKHKMNVPETMNEVLDMSDDE 850
851 VRKANAPEMLSDGEYISDVEEGEDAMTGDTDKYLGPQDLKELGDDSLPAE 900
901 GYMGFSLGARSASLRSFSSDRSYTLNRSSYARDSMMIEELLVPSKEQHLT 950
951 FTREFDSDSLRHYSWAADTLDNVNLVSSPIHSGFLVSFMVDARGGSMRGS 1000
1001 RHHGMRIIIPPRKCTAPTRITCRLVKRHKLANPPPMVEGEGLASRLVEMG 1050
1051 PAGAQFLGPVIVEIPHFGSMRGKERELIVLRSENGETWKEHQFDSKNEDL 1100
1101 TELLNGMDEELDSPEELGKKRICRIITKDFPQYFAVVSRIKQESNQIGPE 1150
1151 GGILSSTTVPLVQASFPEGALTKRIRVGLQAQPVPDEIVKKILGNKATFS 1200
1201 PIVTVEPRRRKFHKPITMTIPVPPPSGEGVSNGYKGDTTPNLRLLCSITG 1250
1251 GTSPAQWEDITGTTPLTFIKDCVSFTTNVSARFWLADCHQVLETVGLATQ 1300
1301 LYRELICVPYMAKFVVFAKMNDPVESSLRCFCMTDDKVDKTLEQQENFEE 1350
1351 VARSKDIEVLEGKPIYVDCYGNLAPLTKGGQQLVFNFYSFKENRLPFSIK 1400
1401 IRDTSQEPCGRLSFLKEPKTTKGLPQTAVCNLNITLPAHKKETESDQDDE 1450
1451 IEKTDRRQSFASLALRKRYSYLTEPGMIERSTGATRSLPTTYSYKPFFST 1500
1501 RPYQSWTTAPITVPGPAKSGFTSLSSSSSNTPSASPLKSIWSVSTPSPIK 1550
1551 STLGASTTSSVKSISDVASPIRSFRTMSSPIKTVVSQSPYNIQVSSGTLA 1600
1601 RAPAVTEATPLKGLASNSTFSSRTSPVTTAGSLLERSSITMTPPASPKSN 1650
1651 INMYSSSLPFKSIITSAAPLISSPLKSVVSPVKSAVDVISSAKITMASSL 1700
1701 SSPVKQMPGHAEVALVNGSISPLKYPSSSTLINGCKATATLQEKISSATN 1750
1751 SVSSVVSAATDTVEKVFSTTTAMPFSPLRSYVSAAPSAFQSLRTPSASAL 1800
1801 YTSLGSSISATTSSVTSSIITVPVYSVVNVLPEPALKKLPDSNSFTKSAA 1850
1851 ALLSPIKTLTTETHPQPHFSRTSSPVKSSLFLAPSALKLSTPSSLSSSQE 1900
1901 ILKDVAEMKEDLMRMTAILQTDVPEEKPFQPELPKEGRIDDEEPFKIVEK 1950
1951 VKEDLVKVSEILKKDVCVDNKGSPKSPKSDKGHSPEDDWIEFSSEEIREA 2000
2001 RQQAAASQSPSLPERVQVKAKAASEKDYNLTKVIDYLTNDIGSSSLTNLK 2050
2051 YKFEDAKKDGEERQKRVLKPAIALQEHKLKMPPASMRTSTSEKELCKMAD 2100
2101 SFFGTDTILESPDDFSQHDQDKSPLSDSGFETRSEKTPSAPQSAESTGPK 2150
2151 PLFHEVPIPPVITETRTEVVHVIRSYDPSAGDVPQTQPEEPVSPKPSPTF 2200
2201 MELEPKPTTSSIKEKVKAFQMKASSEEDDHNRVLSKGMRVKEETHITTTT 2250
2251 RMVYHSPPGGEGASERIEETMSVHDIMKAFQSGRDPSKELAGLFEHKSAV 2300
2301 SPDVHKSAAETSAQHAEKDNQMKPKLERIIEVHIEKGNQAEPTEVIIRET 2350
2351 KKHPEKEMYVYQKDLSRGDINLKDFLPEKHDAFPCSEEQGQQEEEELTAE 2400
2401 ESLPSYLESSRVNTPVSQEEDSRPSSAQLISDDSYKTLKLLSQHSIEYHD 2450
2451 DELSELRGESYRFAEKMLLSEKLDVSHSDTEESVTDHAGPPSSELQGSDK 2500
2501 RSREKIATAPKKEILSKIYKDVSENGVGKVSKDEHFDKVTVLHYSGNVSS 2550
2551 PKHAMWMRFTEDRLDRGREKLIYEDRVDRTVKEAEEKLTEVSQFFRDKTE 2600
2601 KLNDELQSPEKKARPKNGKEYSSQSPTSSSPEKVLLTELLASNDEWVKAR 2650
2651 QHGPDGQGFPKAEEKAPSLPSSPEKMVLSQQTEDSKSTVEAKGSISQSKA 2700
2701 PDGPQSGFQLKQSKLSSIRLKFEQGTHAKSKDMSQEDRKSDGQSRIPVKK 2750
2751 IQESKLPVYQVFAREKQQKAIDLPDESVSVQKDFMVLKTKDEHAQSNEIV 2800
2801 VNDSGSDNVKKQRTEMSSKAMPDSFSEQQAKDLACHITSDLATRGPWDKK 2850
2851 VFRTWESSGATNNKSQKEKLSHVLVHDVRENHIGHPESKSVDQKNEFMSV 2900
2901 TERERKLLTNGSLSEIKEMTVKSPSKKVLYREYVVKEGDHPGGLLDQPSR 2950
2951 RSESSAVSHIPVRVADERRMLSSNIPDGFCEQSAFPKHELSQKLSQSSMS 3000
3001 KETVETQHFNSIEDEKVTYSEISKVSKHQSYVGLCPPLEETETSPTKSPD 3050
3051 SLEFSPGKESPSSDVFDHSPIDGLEKLAPLAQTEGGKEIKTLPVYVSFVQ 3100
3101 VGKQYEKEIQQGGVKKIISQECKTVQETRGTFYTTRQQKQPPSPQGSPED 3150
3151 DTLEQVSFLDSSGKSPLTPETPSSEEVSYEFTSKTPDSLIAYIPGKPSPI 3200
3201 PEVSEESEEEEQAKSTSLKQTTVEETAVEREMPNDVSKDSNQRPKNNRVA 3250
3251 YIEFPPPPPLDADQIESDKKHHYLPEKEVDMIEVNLQDEHDKYQLAEPVI 3300
3301 RVQPPSPVPPGADVSDSSDDESIYQPVPVKKYTFKLKEVDDEQKEKPKAS 3350
3351 AEKASNQKELESNGSGKDNEFGLGLDSPQNEIAQNGNNDQSITECSIATT 3400
3401 AEFSHDTDATEIDSLDGYDLQDEDDGLTESDSKLPIQAMEIKKDIWNTEG 3450
3451 ILKPADRSFSQSKLEVIEEEGKVGPDEDKPPSKSSSSEKTPDKTDQKSGA 3500
3501 QFFTLEGRHPDRSVFPDTYFSYKVDEEFATPFKTVATKGLDFDPWSNNRG 3550
3551 DDEVFDSKSREDETKPFGLAVEDRSPATTPDTTPARTPTDESTPTSEPNP 3600
3601 FPFHEGKMFEMTRSGAIDMSKRDFVEERLQFFQIGEHTSEGKSGDQGEGD 3650
3651 KSMVTATPQPQSGDTTVETNLERNVETPTVEPNPSIPTSGECQEGTSSSG 3700
3701 SLEKSAAATNTSKVDPKLRTPIKMGISASTMTMKKEGPGEITDKIEAVMT 3750
3751 SCQGLENETITMISNTANSQMGVRPHEKHDFQKDNFNNNNNLDSSTIQTD 3800
3801 NIMSNIVLTEHSAPTCTTEKDNPVKVSSGKKTGVLQGHCVRDKQKVLGEQ 3850
3851 QKTKELIGIRQKSKLPIKATSPKDTFPPNHMSNTKASKMKQVSQSEKTKA 3900
3901 LTTSSCVDVKSRIPVKNTHRDNIIAVRKACATQKQGQPEKGKAKQLPSKL 3950
3951 PVKVRSTCVTTTTTTATTTTTTTTTTTTSCTVKVRKSQLKEVCKHSIEYF 4000
4001 KGISGETLKLVDRLSEEEKKMQSELSDEEESTSRNTSLSETSRGGQPSVT 4050
4051 TKSARDKKTEAAPLKSKSEKAGSEKRSSRRTGPQSPCERTDIRMAIVADH 4100
4101 LGLSWTELARELNFSVDEINQIRVENPNSLISQSFMLLKKWVTRDGKNAT 4150
4151 TDALTSVLTKINRIDIVTLLEGPIFDYGNISGTRSFADENNVFHDPVDGW 4200
4201 QNETSSGNLESCAQARRVTGGLLDRLDDSPDQCRDSITSYLKGEAGKFEA 4250
4251 NGSHTEITPEAKTKSYFPESQNDVGKQSTKETLKPKIHGSGHVEEPASPL 4300
4301 AAYQKSLEETSKLIIEETKPCVPVSMKKMSRTSPADGKPRLSLHEEEGSS 4350
4351 GSEQKQGEGFKVKTKKEIRHVEKKSHS 4377

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.