  |  Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. | 
NucPred
Fetching  Q13029  from www.uniprot.org...
The NucPred score for your sequence is 0.99 (see score help below)
   1  MNQNTTEPVAATETLAEVPEHVLRGLPEEVRLFPSAVDKTRIGVWATKPI    50
  51  LKGKKFGPFVGDKKKRSQVKNNVYMWEVYYPNLGWMCIDATDPEKGNWLR   100
 101  YVNWACSGEEQNLFPLEINRAIYYKTLKPIAPGEELLVWYNGEDNPEIAA   150
 151  AIEEERASARSKRSSPKSRKGKKKSQENKNKGNKIQDIQLKTSEPDFTSA   200
 201  NMRDSAEGPKEDEEKPSASALEQPATLQEVASQEVPPELATPAPAWEPQP   250
 251  EPDERLEAAACEVNDLGEEEEEEEEEDEEEEEDDDDDELEDEGEEEASMP   300
 301  NENSVKEPEIRCDEKPEDLLEEPKTTSEETLEDCSEVTPAMQIPRTKEEA   350
 351  NGDVFETFMFPCQHCERKFTTKQGLERHMHIHISTVNHAFKCKYCGKAFG   400
 401  TQINRRRHERRHEAGLKRKPSQTLQPSEDLADGKASGENVASKDDSSPPS   450
 451  LGPDCLIMNSEKASQDTINSSVVEENGEVKELHPCKYCKKVFGTHTNMRR   500
 501  HQRRVHERHLIPKGVRRKGGLEEPQPPAEQAQATQNVYVPSTEPEEEGEA   550
 551  DDVYIMDISSNISENLNYYIDGKIQTNNNTSNCDVIEMESASADLYGINC   600
 601  LLTPVTVEITQNIKTTQVPVTEDLPKEPLGSTNSEAKKRRTASPPALPKI   650
 651  KAETDSDPMVPSCSLSLPLSISTTEAVSFHKEKSVYLSSKLKQLLQTQDK   700
 701  LTPAGISATEIAKLGPVCVSAPASMLPVTSSRFKRRTSSPPSSPQHSPAL   750
 751  RDFGKPSDGKAAWTDAGLTSKKSKLESHSDSPAWSLSGRDERETVSPPCF   800
 801  DEYKMSKEWTASSAFSSVCNQQPLDLSSGVKQKAEGTGKTPVQWESVLDL   850
 851  SVHKKHCSDSEGKEFKESHSVQPTCSAVKKRKPTTCMLQKVLLNEYNGID   900
 901  LPVENPADGTRSPSPCKSLEAQPDPDLGPGSGFPAPTVESTPDVCPSSPA   950
 951  LQTPSLSSGQLPPLLIPTDPSSPPPCPPVLTVATPPPPLLPTVPLPAPSS  1000
1001  SASPHPCPSPLSNATAQSPLPILSPTVSPSPSPIPPVEPLMSAASPGPPT  1050
1051  LSSSSSSSSSSSSFSSSSSSSSPSPPPLSAISSVVSSGDNLEASLPMISF  1100
1101  KQEELENEGLKPREEPQSAAEQDVVVQETFNKNFVCNVCESPFLSIKDLT  1150
1151  KHLSIHAEEWPFKCEFCVQLFKDKTDLSEHRFLLHGVGNIFVCSVCKKEF  1200
1201  AFLCNLQQHQRDLHPDKVCTHHEFESGTLRPQNFTDPSKAHVEHMQSLPE  1250
1251  DPLETSKEEEELNDSSEELYTTIKIMASGIKTKDPDVRLGLNQHYPSFKP  1300
1301  PPFQYHHRNPMGIGVTATNFTTHNIPQTFTTAIRCTKCGKGVDNMPELHK  1350
1351  HILACASASDKKRYTPKKNPVPLKQTVQPKNGVVVLDNSGKNAFRRMGQP  1400
1401  KRLNFSVELSKMSSNKLKLNALKKKNQLVQKAILQKNKSAKQKADLKNAC  1450
1451  ESSSHICPYCNREFTYIGSLNKHAAFSCPKKPLSPPKKKVSHSSKKGGHS  1500
1501  SPASSDKNSNSNHRRRTADAEIKMQSMQTPLGKTRARSSGPTQVPLPSSS  1550
1551  FRSKQNVKFAASVKSKKPSSSSLRNSSPIRMAKITHVEGKKPKAVAKNHS  1600
1601  AQLSSKTSRSLHVRVQKSKAVLQSKSTLASKKRTDRFNIKSRERSGGPVT  1650
1651  RSLQLAAAADLSENKREDGSAKQELKDFSYSLRLASRCSPPAAPYITRQY  1700
1701  RKVKAPAAAQFQGPFFKE                                  1718
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold.  Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus.  Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them).  The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation).  Another benchmark is available in the Bioinformatics 2007 paper. | 
| NucPred score threshold |  Specificity |  Sensitivity | 
 | see above |  fraction of proteins predicted to be nuclear that actually are nuclear |  fraction of true nuclear proteins that are predicted (coverage) | 
 | 0.10 |  0.45 |  0.88 | 
 | 0.20 |  0.52 |  0.83 | 
 | 0.30 |  0.57 |  0.77 | 
 | 0.40 |  0.63 |  0.69 | 
 | 0.50 |  0.70 |  0.62 | 
 | 0.60 |  0.71 |  0.53 | 
 | 0.70 |  0.81 |  0.44 | 
 | 0.80 |  0.84 |  0.32 | 
 | 0.90 |  0.88 |  0.21 | 
 | 1.00 |  1.00 |  0.02 | 
| Sequences which score >= 0.8 with NucPred and which
                are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%.  (PredictNLS by itself is 87% correct with 26% coverage on the same data.) | 
Go back to the NucPred Home Page.