 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q13315 from www.uniprot.org...
The NucPred score for your sequence is 0.98 (see score help below)
1 MSLVLNDLLICCRQLEHDRATERKKEVEKFKRLIRDPETIKHLDRHSDSK 50
51 QGKYLNWDAVFRFLQKYIQKETECLRIAKPNVSASTQASRQKKMQEISSL 100
101 VKYFIKCANRRAPRLKCQELLNYIMDTVKDSSNGAIYGADCSNILLKDIL 150
151 SVRKYWCEISQQQWLELFSVYFRLYLKPSQDVHRVLVARIIHAVTKGCCS 200
201 QTDGLNSKFLDFFSKAIQCARQEKSSSGLNHILAALTIFLKTLAVNFRIR 250
251 VCELGDEILPTLLYIWTQHRLNDSLKEVIIELFQLQIYIHHPKGAKTQEK 300
301 GAYESTKWRSILYNLYDLLVNEISHIGSRGKYSSGFRNIAVKENLIELMA 350
351 DICHQVFNEDTRSLEISQSYTTTQRESSDYSVPCKRKKIELGWEVIKDHL 400
401 QKSQNDFDLVPWLQIATQLISKYPASLPNCELSPLLMILSQLLPQQRHGE 450
451 RTPYVLRCLTEVALCQDKRSNLESSQKSDLLKLWNKIWCITFRGISSEQI 500
501 QAENFGLLGAIIQGSLVEVDREFWKLFTGSACRPSCPAVCCLTLALTTSI 550
551 VPGTVKMGIEQNMCEVNRSFSLKESIMKWLLFYQLEGDLENSTEVPPILH 600
601 SNFPHLVLEKILVSLTMKNCKAAMNFFQSVPECEHHQKDKEELSFSEVEE 650
651 LFLQTTFDKMDFLTIVRECGIEKHQSSIGFSVHQNLKESLDRCLLGLSEQ 700
701 LLNNYSSEITNSETLVRCSRLLVGVLGCYCYMGVIAEEEAYKSELFQKAK 750
751 SLMQCAGESITLFKNKTNEEFRIGSLRNMMQLCTRCLSNCTKKSPNKIAS 800
801 GFFLRLLTSKLMNDIADICKSLASFIKKPFDRGEVESMEDDTNGNLMEVE 850
851 DQSSMNLFNDYPDSSVSDANEPGESQSTIGAINPLAEEYLSKQDLLFLDM 900
901 LKFLCLCVTTAQTNTVSFRAADIRRKLLMLIDSSTLEPTKSLHLHMYLML 950
951 LKELPGEEYPLPMEDVLELLKPLSNVCSLYRRDQDVCKTILNHVLHVVKN 1000
1001 LGQSNMDSENTRDAQGQFLTVIGAFWHLTKERKYIFSVRMALVNCLKTLL 1050
1051 EADPYSKWAILNVMGKDFPVNEVFTQFLADNHHQVRMLAAESINRLFQDT 1100
1101 KGDSSRLLKALPLKLQQTAFENAYLKAQEGMREMSHSAENPETLDEIYNR 1150
1151 KSVLLTLIAVVLSCSPICEKQALFALCKSVKENGLEPHLVKKVLEKVSET 1200
1201 FGYRRLEDFMASHLDYLVLEWLNLQDTEYNLSSFPFILLNYTNIEDFYRS 1250
1251 CYKVLIPHLVIRSHFDEVKSIANQIQEDWKSLLTDCFPKILVNILPYFAY 1300
1301 EGTRDSGMAQQRETATKVYDMLKSENLLGKQIDHLFISNLPEIVVELLMT 1350
1351 LHEPANSSASQSTDLCDFSGDLDPAPNPPHFPSHVIKATFAYISNCHKTK 1400
1401 LKSILEILSKSPDSYQKILLAICEQAAETNNVYKKHRILKIYHLFVSLLL 1450
1451 KDIKSGLGGAWAFVLRDVIYTLIHYINQRPSCIMDVSLRSFSLCCDLLSQ 1500
1501 VCQTAVTYCKDALENHLHVIVGTLIPLVYEQVEVQKQVLDLLKYLVIDNK 1550
1551 DNENLYITIKLLDPFPDHVVFKDLRITQQKIKYSRGPFSLLEEINHFLSV 1600
1601 SVYDALPLTRLEGLKDLRRQLELHKDQMVDIMRASQDNPQDGIMVKLVVN 1650
1651 LLQLSKMAINHTGEKEVLEAVGSCLGEVGPIDFSTIAIQHSKDASYTKAL 1700
1701 KLFEDKELQWTFIMLTYLNNTLVEDCVKVRSAAVTCLKNILATKTGHSFW 1750
1751 EIYKMTTDPMLAYLQPFRTSRKKFLEVPRFDKENPFEGLDDINLWIPLSE 1800
1801 NHDIWIKTLTCAFLDSGGTKCEILQLLKPMCEVKTDFCQTVLPYLIHDIL 1850
1851 LQDTNESWRNLLSTHVQGFFTSCLRHFSQTSRSTTPANLDSESEHFFRCC 1900
1901 LDKKSQRTMLAVVDYMRRQKRPSSGTIFNDAFWLDLNYLEVAKVAQSCAA 1950
1951 HFTALLYAEIYADKKSMDDQEKRSLAFEEGSQSTTISSLSEKSKEETGIS 2000
2001 LQDLLLEIYRSIGEPDSLYGCGGGKMLQPITRLRTYEHEAMWGKALVTYD 2050
2051 LETAIPSSTRQAGIIQALQNLGLCHILSVYLKGLDYENKDWCPELEELHY 2100
2101 QAAWRNMQWDHCTSVSKEVEGTSYHESLYNALQSLRDREFSTFYESLKYA 2150
2151 RVKEVEEMCKRSLESVYSLYPTLSRLQAIGELESIGELFSRSVTHRQLSE 2200
2201 VYIKWQKHSQLLKDSDFSFQEPIMALRTVILEILMEKEMDNSQRECIKDI 2250
2251 LTKHLVELSILARTFKNTQLPERAIFQIKQYNSVSCGVSEWQLEEAQVFW 2300
2301 AKKEQSLALSILKQMIKKLDASCAANNPSLKLTYTECLRVCGNWLAETCL 2350
2351 ENPAVIMQTYLEKAVEVAGNYDGESSDELRNGKMKAFLSLARFSDTQYQR 2400
2401 IENYMKSSEFENKQALLKRAKEEVGLLREHKIQTNRYTVKVQRELELDEL 2450
2451 ALRALKEDRKRFLCKAVENYINCLLSGEEHDMWVFRLCSLWLENSGVSEV 2500
2501 NGMMKRDGMKIPTYKFLPLMYQLAARMGTKMMGGLGFHEVLNNLISRISM 2550
2551 DHPHHTLFIILALANANRDEFLTKPEVARRSRITKNVPKQSSQLDEDRTE 2600
2601 AANRIICTIRSRRPQMVRSVEALCDAYIILANLDATQWKTQRKGINIPAD 2650
2651 QPITKLKNLEDVVVPTMEIKVDHTGEYGNLVTIQSFKAEFRLAGGVNLPK 2700
2701 IIDCVGSDGKERRQLVKGRDDLRQDAVMQQVFQMCNTLLQRNTETRKRKL 2750
2751 TICTYKVVPLSQRSGVLEWCTGTVPIGEFLVNNEDGAHKRYRPNDFSAFQ 2800
2801 CQKKMMEVQKKSFEEKYEVFMDVCQNFQPVFRYFCMEKFLDPAIWFEKRL 2850
2851 AYTRSVATSSIVGYILGLGDRHVQNILINEQSAELVHIDLGVAFEQGKIL 2900
2901 PTPETVPFRLTRDIVDGMGITGVEGVFRRCCEKTMEVMRNSQETLLTIVE 2950
2951 VLLYDPLFDWTMNPLKALYLQQRPEDETELHPTLNADDQECKRNLSDIDQ 3000
3001 SFNKVAERVLMRLQEKLKGVEEGTVLSVGGQVNLLIQQAIDPKNLSRLFP 3050
3051 GWKAWV 3056
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.