SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q13428 from www.uniprot.org...

The NucPred score for your sequence is 0.92 (see score help below)

   1  MAEARKRRELLPLIYHHLLRAGYVRAAREVKEQSGQKCFLAQPVTLLDIY    50
51 THWQQTSELGRKRKAEEDAALQAKKTRVSDPISTSESSEEEEEAEAETAK 100
101 ATPRLASTNSSVLGADLPSSMKEKAKAETEKAGKTGNSMPHPATGKTVAN 150
151 LLSGKSPRKSAEPSANTTLVSETEEEGSVPAFGAAAKPGMVSAGQADSSS 200
201 EDTSSSSDETDVEGKPSVKPAQVKASSVSTKESPARKAAPAPGKVGDVTP 250
251 QVKGGALPPAKRAKKPEEESESSEEGSESEEEAPAGTRSQVKASEKILQV 300
301 RAASAPAKGTPGKGATPAPPGKAGAVASQTKAGKPEEDSESSSEESSDSE 350
351 EETPAAKALLQAKASGKTSQVGAASAPAKESPRKGAAPAPPGKTGPAVAK 400
401 AQAGKREEDSQSSSEESDSEEEAPAQAKPSGKAPQVRAASAPAKESPRKG 450
451 AAPAPPRKTGPAAAQVQVGKQEEDSRSSSEESDSDREALAAMNAAQVKPL 500
501 GKSPQVKPASTMGMGPLGKGAGPVPPGKVGPATPSAQVGKWEEDSESSSE 550
551 ESSDSSDGEVPTAVAPAQEKSLGNILQAKPTSSPAKGPPQKAGPVAVQVK 600
601 AEKPMDNSESSEESSDSADSEEAPAAMTAAQAKPALKIPQTKACPKKTNT 650
651 TASAKVAPVRVGTQAPRKAGTATSPAGSSPAVAGGTQRPAEDSSSSEESD 700
701 SEEEKTGLAVTVGQAKSVGKGLQVKAASVPVKGSLGQGTAPVLPGKTGPT 750
751 VTQVKAEKQEDSESSEEESDSEEAAASPAQVKTSVKKTQAKANPAAARAP 800
801 SAKGTISAPGKVVTAAAQAKQRSPSKVKPPVRNPQNSTVLARGPASVPSV 850
851 GKAVATAAQAQTGPEEDSGSSEEESDSEEEAETLAQVKPSGKTHQIRAAL 900
901 APAKESPRKGAAPTPPGKTGPSAAQAGKQDDSGSSSEESDSDGEAPAAVT 950
951 SAQVIKPPLIFVDPNRSPAGPAATPAQAQAASTPRKARASESTARSSSSE 1000
1001 SEDEDVIPATQCLTPGIRTNVVTMPTAHPRIAPKASMAGASSSKESSRIS 1050
1051 DGKKQEGPATQVSKKNPASLPLTQAALKVLAQKASEAQPPVARTQPSSGV 1100
1101 DSAVGTLPATSPQSTSVQAKGTNKLRKPKLPEVQQATKAPESSDDSEDSS 1150
1151 DSSSGSEEDGEGPQGAKSAHTLGPTPSRTETLVEETAAESSEDDVVAPSQ 1200
1201 SLLSGYMTPGLTPANSQASKATPKLDSSPSVSSTLAAKDDPDGKQEAKPQ 1250
1251 QAAGMLSPKTGGKEAASGTTPQKSRKPKKGAGNPQASTLALQSNITQCLL 1300
1301 GQPWPLNEAQVQASVVKVLTELLEQERKKVVDTTKESSRKGWESRKRKLS 1350
1351 GDQPAARTPRSKKKKKLGAGEGGEASVSPEKTSTTSKGKAKRDKASGDVK 1400
1401 EKKGKGSLGSQGAKDEPEEELQKGMGTVEGGDQSNPKSKKEKKKSDKRKK 1450
1451 DKEKKEKKKKAKKASTKDSESPSQKKKKKKKKTAEQTV 1488

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.