SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q14160 from www.uniprot.org...

The NucPred score for your sequence is 0.63 (see score help below)

   1  MLKCIPLWRCNRHVESVDKRHCSLQAVPEEIYRYSRSLEELLLDANQLRE    50
51 LPKPFFRLLNLRKLGLSDNEIQRLPPEVANFMQLVELDVSRNDIPEIPES 100
101 IKFCKALEIADFSGNPLSRLPDGFTQLRSLAHLALNDVSLQALPGDVGNL 150
151 ANLVTLELRENLLKSLPASLSFLVKLEQLDLGGNDLEVLPDTLGALPNLR 200
201 ELWLDRNQLSALPPELGNLRRLVCLDVSENRLEELPAELGGLVLLTDLLL 250
251 SQNLLRRLPDGIGQLKQLSILKVDQNRLCEVTEAIGDCENLSELILTENL 300
301 LMALPRSLGKLTKLTNLNVDRNHLEALPPEIGGCVALSVLSLRDNRLAVL 350
351 PPELAHTTELHVLDVAGNRLQSLPFALTHLNLKALWLAENQAQPMLRFQT 400
401 EDDARTGEKVLTCYLLPQQPPPSLEDAGQQGSLSETWSDAPPSRVSVIQF 450
451 LEAPIGDEDAEEAAAEKRGLQRRATPHPSELKVMKRSIEGRRSEACPCQP 500
501 DSGSPLPAEEEKRLSAESGLSEDSRPSASTVSEAEPEGPSAEAQGGSQQE 550
551 ATTAGGEEDAEEDYQEPTVHFAEDALLPGDDREIEEGQPEAPWTLPGGRQ 600
601 RLIRKDTPHYKKHFKISKLPQPEAVVALLQGMQPDGEGPVAPGGWHNGPH 650
651 APWAPRAQKEEEEEEEGSPQEEEEEEEEENRAEEEEASTEEEDKEGAVVS 700
701 APSVKGVSFDQANNLLIEPARIEEEELTLTILRQTGGLGISIAGGKGSTP 750
751 YKGDDEGIFISRVSEEGPAARAGVRVGDKLLEVNGVALQGAEHHEAVEAL 800
801 RGAGTAVQMRVWRERMVEPENAVTITPLRPEDDYSPRERRGGGLRLPLLP 850
851 PESPGPLRQRHVACLARSERGLGFSIAGGKGSTPYRAGDAGIFVSRIAEG 900
901 GAAHRAGTLQVGDRVLSINGVDVTEARHDHAVSLLTAASPTIALLLEREA 950
951 GGPLPPSPLPHSSPPTAAVATTSITTATPGVPGLPSLAPSLLAAALEGPY 1000
1001 PVEEIRLPRAGGPLGLSIVGGSDHSSHPFGVQEPGVFISKVLPRGLAARS 1050
1051 GLRVGDRILAVNGQDVRDATHQEAVSALLRPCLELSLLVRRDPAPPGLRE 1100
1101 LCIQKAPGERLGISIRGGARGHAGNPRDPTDEGIFISKVSPTGAAGRDGR 1150
1151 LRVGLRLLEVNQQSLLGLTHGEAVQLLRSVGDTLTVLVCDGFEASTDAAL 1200
1201 EVSPGVIANPFAAGIGHRNSLESISSIDRELSPEGPGKEKELPGQTLHWG 1250
1251 PEATEAAGRGLQPLKLDYRALAAVPSAGSVQRVPSGAAGGKMAESPCSPS 1300
1301 GQQPPSPPSPDELPANVKQAYRAFAAVPTSHPPEDAPAQPPTPGPAASPE 1350
1351 QLSFRERQKYFELEVRVPQAEGPPKRVSLVGADDLRKMQEEEARKLQQKR 1400
1401 AQMLREAAEAGAEARLALDGETLGEEEQEDEQPPWASPSPTSRQSPASPP 1450
1451 PLGGGAPVRTAKAERRHQERLRVQSPEPPAPERALSPAELRALEAEKRAL 1500
1501 WRAARMKSLEQDALRAQMVLSRSQEGRGTRGPLERLAEAPSPAPTPSPTP 1550
1551 VEDLGPQTSTSPGRLPLSGKKFDYRAFAALPSSRPVYDIQSPDFAEELRS 1600
1601 LEPSPSPGPQEEDGEVALVLLGRPSPGAVGPEDVALCSSRRPVRPGRRGL 1650
1651 GPVPS 1655

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.