| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q14839 from www.uniprot.org...
The NucPred score for your sequence is 0.97 (see score help below)
1 MASGLGSPSPCSAGSEEEDMDALLNNSLPPPHPENEEDPEEDLSETETPK 50
51 LKKKKKPKKPRDPKIPKSKRQKKERMLLCRQLGDSSGEGPEFVEEEEEVA 100
101 LRSDSEGSDYTPGKKKKKKLGPKKEKKSKSKRKEEEEEEDDDDDSKEPKS 150
151 SAQLLEDWGMEDIDHVFSEEDYRTLTNYKAFSQFVRPLIAAKNPKIAVSK 200
201 MMMVLGAKWREFSTNNPFKGSSGASVAAAAAAAVAVVESMVTATEVAPPP 250
251 PPVEVPIRKAKTKEGKGPNARRKPKGSPRVPDAKKPKPKKVAPLKIKLGG 300
301 FGSKRKRSSSEDDDLDVESDFDDASINSYSVSDGSTSRSSRSRKKLRTTK 350
351 KKKKGEEEVTAVDGYETDHQDYCEVCQQGGEIILCDTCPRAYHMVCLDPD 400
401 MEKAPEGKWSCPHCEKEGIQWEAKEDNSEGEEILEEVGGDLEEEDDHHME 450
451 FCRVCKDGGELLCCDTCPSSYHIHCLNPPLPEIPNGEWLCPRCTCPALKG 500
501 KVQKILIWKWGQPPSPTPVPRPPDADPNTPSPKPLEGRPERQFFVKWQGM 550
551 SYWHCSWVSELQLELHCQVMFRNYQRKNDMDEPPSGDFGGDEEKSRKRKN 600
601 KDPKFAEMEERFYRYGIKPEWMMIHRILNHSVDKKGHVHYLIKWRDLPYD 650
651 QASWESEDVEIQDYDLFKQSYWNHRELMRGEEGRPGKKLKKVKLRKLERP 700
701 PETPTVDPTVKYERQPEYLDATGGTLHPYQMEGLNWLRFSWAQGTDTILA 750
751 DEMGLGKTVQTAVFLYSLYKEGHSKGPFLVSAPLSTIINWEREFEMWAPD 800
801 MYVVTYVGDKDSRAIIRENEFSFEDNAIRGGKKASRMKKEASVKFHVLLT 850
851 SYELITIDMAILGSIDWACLIVDEAHRLKNNQSKFFRVLNGYSLQHKLLL 900
901 TGTPLQNNLEELFHLLNFLTPERFHNLEGFLEEFADIAKEDQIKKLHDML 950
951 GPHMLRRLKADVFKNMPSKTELIVRVELSPMQKKYYKYILTRNFEALNAR 1000
1001 GGGNQVSLLNVVMDLKKCCNHPYLFPVAAMEAPKMPNGMYDGSALIRASG 1050
1051 KLLLLQKMLKNLKEGGHRVLIFSQMTKMLDLLEDFLEHEGYKYERIDGGI 1100
1101 TGNMRQEAIDRFNAPGAQQFCFLLSTRAGGLGINLATADTVIIYDSDWNP 1150
1151 HNDIQAFSRAHRIGQNKKVMIYRFVTRASVEERITQVAKKKMMLTHLVVR 1200
1201 PGLGSKTGSMSKQELDDILKFGTEELFKDEATDGGGDNKEGEDSSVIHYD 1250
1251 DKAIERLLDRNQDETEDTELQGMNEYLSSFKVAQYVVREEEMGEEEEVER 1300
1301 EIIKQEESVDPDYWEKLLRHHYEQQQEDLARNLGKGKRIRKQVNYNDGSQ 1350
1351 EDRDWQDDQSDNQSDYSVASEEGDEDFDERSEAPRRPSRKGLRNDKDKPL 1400
1401 PPLLARVGGNIEVLGFNARQRKAFLNAIMRYGMPPQDAFTTQWLVRDLRG 1450
1451 KSEKEFKAYVSLFMRHLCEPGADGAETFADGVPREGLSRQHVLTRIGVMS 1500
1501 LIRKKVQEFEHVNGRWSMPELAEVEENKKMSQPGSPSPKTPTPSTPGDTQ 1550
1551 PNTPAPVPPAEDGIKIEENSLKEEESIEGEKEVKSTAPETAIECTQAPAP 1600
1601 ASEDEKVVVEPPEGEEKVEKAEVKERTEEPMETEPKGAADVEKVEEKSAI 1650
1651 DLTPIVVEDKEEKKEEEEKKEVMLQNGETPKDLNDEKQKKNIKQRFMFNI 1700
1701 ADGGFTELHSLWQNEERAATVTKKTYEIWHRRHDYWLLAGIINHGYARWQ 1750
1751 DIQNDPRYAILNEPFKGEMNRGNFLEIKNKFLARRFKLLEQALVIEEQLR 1800
1801 RAAYLNMSEDPSHPSMALNTRFAEVECLAESHQHLSKESMAGNKPANAVL 1850
1851 HKVLKQLEELLSDMKADVTRLPATIARIPPVAVRLQMSERNILSRLANRA 1900
1901 PEPTPQQVAQQQ 1912
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.