| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q14966 from www.uniprot.org...
The NucPred score for your sequence is 0.99 (see score help below)
1 MSRPRFNPRGDFPLQRPRAPNPSGMRPPGPFMRPGSMGLPRFYPAGRARG 50
51 IPHRFAGHESYQNMGPQRMNVQVTQHRTDPRLTKEKLDFHEAQQKKGKPH 100
101 GSRWDDEPHISASVAVKQSSVTQVTEQSPKVQSRYTKESASSILASFGLS 150
151 NEDLEELSRYPDEQLTPENMPLILRDIRMRKMGRRLPNLPSQSRNKETLG 200
201 SEAVSSNVIDYGHASKYGYTEDPLEVRIYDPEIPTDEVENEFQSQQNISA 250
251 SVPNPNVICNSMFPVEDVFRQMDFPGESSNNRSFFSVESGTKMSGLHISG 300
301 GQSVLEPIKSVNQSINQTVSQTMSQSLIPPSMNQQPFSSELISSVSQQER 350
351 IPHEPVINSSNVHVGSRGSKKNYQSQADIPIRSPFGIVKASWLPKFSHAD 400
401 AQKMKRLPTPSMMNDYYAASPRIFPHLCSLCNVECSHLKDWIQHQNTSTH 450
451 IESCRQLRQQYPDWNPEILPSRRNEGNRKENETPRRRSHSPSPRRSRRSS 500
501 SSHRFRRSRSPMHYMYRPRSRSPRICHRFISRYRSRSRSRSPYRIRNPFR 550
551 GSPKCFRSVSPERMSRRSVRSSDRKKALEDVVQRSGHGTEFNKQKHLEAA 600
601 DKGHSPAQKPKTSSGTKPSVKPTSATKSDSNLGGHSIRCKSKNLEDDTLS 650
651 ECKQVSDKAVSLQRKLRKEQSLHYGSVLLITELPEDGCTEEDVRKLFQPF 700
701 GKVNDVLIVPYRKEAYLEMEFKEAITAIMKYIETTPLTIKGKSVKICVPG 750
751 KKKAQNKEVKKKTLESKKVSASTLKRDADASKAVEIVTSTSAAKTGQAKA 800
801 SVAKVNKSTGKSASSVKSVVTVAVKGNKASIKTAKSGGKKSLEAKKTGNV 850
851 KNKDSNKPVTIPENSEIKTSIEVKATENCAKEAISDAALEATENEPLNKE 900
901 TEEMCVMLVSNLPNKGYSVEEVYDLAKPFGGLKDILILSSHKKAYIEINR 950
951 KAAESMVKFYTCFPVLMDGNQLSISMAPENMNIKDEEAIFITLVKENDPE 1000
1001 ANIDTIYDRFVHLDNLPEDGLQCVLCVGLQFGKVDHHVFISNRNKAILQL 1050
1051 DSPESAQSMYSFLKQNPQNIGDHMLTCSLSPKIDLPEVQIEHDPELEKES 1100
1101 PGLKNSPIDESEVQTATDSPSVKPNELEEESTPSIQTETLVQQEEPCEEE 1150
1151 AEKATCDSDFAVETLELETQGEEVKEEIPLVASASVSIEQFTENAEECAL 1200
1201 NQQMFNSDLEKKGAEIINPKTALLPSDSVFAEERNLKGILEESPSEAEDF 1250
1251 ISGITQTMVEAVAEVEKNETVSEILPSTCIVTLVPGIPTGDEKTVDKKNI 1300
1301 SEKKGNMDEKEEKEFNTKETRMDLQIGTEKAEKNEGRMDAEKVEKMAAMK 1350
1351 EKPAENTLFKAYPNKGVGQANKPDETSKTSILAVSDVSSSKPSIKAVIVS 1400
1401 SPKAKATVSKTENQKSFPKSVPRDQINAEKKLSAKEFGLLKPTSARSGLA 1450
1451 ESSSKFKPTQSSLTRGGSGRISALQGKLSKLDYRDITKQSQETEARPSIM 1500
1501 KRDDSNNKTLAEQNTKNPKSTTGRSSKSKEEPLFPFNLDEFVTVDEVIEE 1550
1551 VNPSQAKQNPLKGKRKETLKNVPFSELNLKKKKGKTSTPRGVEGELSFVT 1600
1601 LDEIGEEEDAAAHLAQALVTVDEVIDEEELNMEEMVKNSNSLFTLDELID 1650
1651 QDDCISHSEPKDVTVLSVAEEQDLLKQERLVTVDEIGEVEELPLNESADI 1700
1701 TFATLNTKGNEGDTVRDSIGFISSQVPEDPSTLVTVDEIQDDSSDLHLVT 1750
1751 LDEVTEEDEDSLADFNNLKEELNFVTVDEVGEEEDGDNDLKVELAQSKND 1800
1801 HPTDKKGNRKKRAVDTKKTKLESLSQVGPVNENVMEEDLKTMIERHLTAK 1850
1851 TPTKRVRIGKTLPSEKAVVTEPAKGEEAFQMSEVDEESGLKDSEPERKRK 1900
1901 KTEDSSSGKSVASDVPEELDFLVPKAGFFCPICSLFYSGEKAMTNHCKST 1950
1951 RHKQNTEKFMAKQRKEKEQNEAEERSSR 1978
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.