SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q15413 from www.uniprot.org...

The NucPred score for your sequence is 0.80 (see score help below)

   1  MAEGGEGGEDEIQFLRTEDEVVLQCIATIHKEQRKFCLAAEGLGNRLCFL    50
51 EPTSEAKYIPPDLCVCNFVLEQSLSVRALQEMLANTGENGGEGAAQGGGH 100
101 RTLLYGHAVLLRHSFSGMYLTCLTTSRSQTDKLAFDVGLREHATGEACWW 150
151 TIHPASKQRSEGEKVRIGDDLILVSVSSERYLHLSVSNGNIQVDASFMQT 200
201 LWNVHPTCSGSSIEEGYLLGGHVVRLFHGHDECLTIPSTDQNDSQHRRIF 250
251 YEAGGAGTRARSLWRVEPLRISWSGSNIRWGQAFRLRHLTTGHYLALTED 300
301 QGLILQDRAKSDTKSTAFSFRASKELKEKLDSSHKRDIEGMGVPEIKYGD 350
351 SVCFVQHIASGLWVTYKAQDAKTSRLGPLKRKVILHQEGHMDDGLTLQRC 400
401 QREESQAARIIRNTTALFSQFVSGNNRTAAPITLPIEEVLQTLQDLIAYF 450
451 QPPEEEMRHEDKQNKLRSLKNRQNLFKEEGMLALVLNCIDRLNVYNSVAH 500
501 FAGIAREESGMAWKEILNLLYKLLAALIRGNRNNCAQFSNNLDWLISKLD 550
551 RLESSSGILEVLHCILTESPEALNLIAEGHIKSIISLLDKHGRNHKVLDI 600
601 LCSLCLCNGVAVRANQNLICDNLLPRRNLLLQTRLINDVTSIRPNIFLGV 650
651 AEGSAQYKKWYFELIIDQVDPFLTAEPTHLRVGWASSSGYAPYPGGGEGW 700
701 GGNGVGDDLYSYGFDGLHLWSGRIPRAVASINQHLLRSDDVVSCCLDLGV 750
751 PSISFRINGQPVQGMFENFNTDGLFFPVMSFSAGVKVRFLMGGRHGEFKF 800
801 LPPSGYAPCYEALLPKEKMRLEPVKEYKRDADGIRDLLGTTQFLSQASFI 850
851 PCPVDTSQVILPPHLEKIRDRLAENIHELWGMNKIELGWTFGKIRDDNKR 900
901 QHPCLVEFSKLPETEKNYNLQMSTETLKTLLALGCHIAHVNPAAEEDLKK 950
951 VKLPKNYMMSNGYKPAPLDLSDVKLLPPQEILVDKLAENAHNVWAKDRIK 1000
1001 QGWTYGIQQDLKNKRNPRLVPYALLDERTKKSNRDSLREAVRTFVGYGYN 1050
1051 IEPSDQELADSAVEKVSIDKIRFFRVERSYAVRSGKWYFEFEVVTGGDMR 1100
1101 VGWARPGCRPDVELGADDQAFVFEGNRGQRWHQGSGYFGRTWQPGDVVGC 1150
1151 MINLDDASMIFTLNGELLITNKGSELAFADYEIENGFVPICCLGLSQIGR 1200
1201 MNLGTDASTFKFYTMCGLQEGFEPFAVNMNRDVAMWFSKRLPTFVNVPKD 1250
1251 HPHIEVMRIDGTMDSPPCLKVTHKTFGTQNSNADMIYCRLSMPVECHSSF 1300
1301 SHSPCLDSEAFQKRKQMQEILSHTTTQCYYAIRIFAGQDPSCVWVGWVTP 1350
1351 DYHLYSEKFDLNKNCTVTVTLGDERGRVHESVKRSNCYMVWGGDIVASSQ 1400
1401 RSNRSNVDLEIGCLVDLAMGMLSFSANGKELGTCYQVEPNTKVFPAVFLQ 1450
1451 PTSTSLFQFELGKLKNAMPLSAAIFRSEEKNPVPQCPPRLDVQTIQPVLW 1500
1501 SRMPNSFLKVETERVSERHGWVVQCLEPLQMMALHIPEENRCVDILELCE 1550
1551 QEDLMRFHYHTLRLYSAVCALGNSRVAYALCSHVDLSQLFYAIDNKYLPG 1600
1601 LLRSGFYDLLISIHLASAKERKLMMKNEYIIPITSTTRNIRLFPDESKRH 1650
1651 GLPGVGLRTCLKPGFRFSTPCFVVTGEDHQKQSPEIPLESLRTKALSMLT 1700
1701 EAVQCSGAHIRDPVGGSVEFQFVPVLKLIGTLLVMGVFDDDDVRQILLLI 1750
1751 DPSVFGEHSAGTEEGAEKEEVTQVEEKAVEAGEKAGKEAPVKGLLQTRLP 1800
1801 ESVKLQMCELLSYLCDCELQHRVEAIVAFGDIYVSKLQANQKFRYNELMQ 1850
1851 ALNMSAALTARKTKEFRSPPQEQINMLLNFQLGENCPCPEEIREELYDFH 1900
1901 EDLLLHCGVPLEEEEEEEEDTSWTGKLCALVYKIKGPPKPEKEQPTEEEE 1950
1951 RCPTTLKELISQTMICWAQEDQIQDSELVRMMFNLLRRQYDSIGELLQAL 2000
2001 RKTYTISHTSVSDTINLLAALGQIRSLLSVRMGKEEELLMINGLGDIMNN 2050
2051 KVFYQHPNLMRVLGMHETVMEVMVNVLGTEKSQIAFPKMVASCCRFLCYF 2100
2101 CRISRQNQKAMFEHLSYLLENSSVGLASPSMRGSTPLDVAASSVMDNNEL 2150
2151 ALSLEEPDLEKVVTYLAGCGLQSCPMLLAKGYPDVGWNPIEGERYLSFLR 2200
2201 FAVFVNSESVEENASVVVKLLIRRPECFGPALRGEGGNGLLAAMQGAIKI 2250
2251 SENPALDLPSQGYKREVSTGDDEEEEEIVHMGNAIMSFYSALIDLLGRCA 2300
2301 PEMHLIQTGKGEAIRIRSILRSLVPTEDLVGIISIPLKLPSLNKDGSVSE 2350
2351 PDMAANFCPDHKAPMVLFLDRVYGIKDQTFLLHLLEVGFLPDLRASASLD 2400
2401 TVSLSTTEAALALNRYICSAVLPLLTRCAPLFAGTEHCTSLIDSTLQTIY 2450
2451 RLSKGRSLTKAQRDTIEECLLAICNHLRPSMLQQLLRRLVFDVPQLNEYC 2500
2501 KMPLKLLTNHYEQCWKYYCLPSGWGSYGLAVEEELHLTEKLFWGIFDSLS 2550
2551 HKKYDPDLFRMALPCLSAIAGALPPDYLDTRITATLEKQISVDADGNFDP 2600
2601 KPINTMNFSLPEKLEYIVTKYAEHSHDKWACDKSQSGWKYGISLDENVKT 2650
2651 HPLIRPFKTLTEKEKEIYRWPARESLKTMLAVGWTVERTKEGEALVQQRE 2700
2701 NEKLRSVSQANQGNSYSPAPLDLSNVVLSRELQGMVEVVAENYHNIWAKK 2750
2751 KKLELESKGGGSHPLLVPYDTLTAKEKFKDREKAQDLFKFLQVNGIIVSR 2800
2801 GMKDMELDASSMEKRFAYKFLKKILKYVDSAQEFIAHLEAIVSSGKTEKS 2850
2851 PRDQEIKFFAKVLLPLVDQYFTSHCLYFLSSPLKPLSSSGYASHKEKEMV 2900
2901 AGLFCKLAALVRHRISLFGSDSTTMVSCLHILAQTLDTRTVMKSGSELVK 2950
2951 AGLRAFFENAAEDLEKTSENLKLGKFTHSRTQIKGVSQNINYTTVALLPI 3000
3001 LTSIFEHVTQHQFGMDLLLGDVQISCYHILCSLYSLGTGKNIYVERQRPA 3050
3051 LGECLASLAAAIPVAFLEPTLNRYNPLSVFNTKTPRERSILGMPDTVEDM 3100
3101 CPDIPQLEGLMKEINDLAESGARYTEMPHVIEVILPMLCNYLSYWWERGP 3150
3151 ENLPPSTGPCCTKVTSEHLSLILGNILKIINNNLGIDEASWMKRIAVYAQ 3200
3201 PIISKARPDLLRSHFIPTLEKLKKKAVKTVQEEEQLKADGKGDTQEAELL 3250
3251 ILDEFAVLCRDLYAFYPMLIRYVDNNRSNWLKSPDADSDQLFRMVAEVFI 3300
3301 LWCKSHNFKREEQNFVIQNEINNLAFLTGDSKSKMSKAMQVKSGGQDQER 3350
3351 KKTKRRGDLYSIQTSLIVAALKKMLPIGLNMCTPGDQELISLAKSRYSHR 3400
3401 DTDEEVREHLRNNLHLQEKSDDPAVKWQLNLYKDVLKSEEPFNPEKTVER 3450
3451 VQRISAAVFHLEQVEQPLRSKKAVWHKLLSKQRKRAVVACFRMAPLYNLP 3500
3501 RHRSINLFLHGYQRFWIETEEYSFEEKLVQDLAKSPKVEEEEEEETEKQP 3550
3551 DPLHQIILYFSRNALTERSKLEDDPLYTSYSSMMAKSCQSGEDEEEDEDK 3600
3601 EKTFEEKEMEKQKTLYQQARLHERGAAEMVLQMISASKGEMSPMVVETLK 3650
3651 LGIAILNGGNAGVQQKMLDYLKEKKDAGFFQSLSGLMQSCSVLDLNAFER 3700
3701 QNKAEGLGMVTEEGTLIVRERGEKVLQNDEFTRDLFRFLQLLCEGHNSDF 3750
3751 QNFLRTQMGNTTTVNVIISTVDYLLRLQESISDFYWYYSGKDIIDESGQH 3800
3801 NFSKALAVTKQIFNSLTEYIQGPCIGNQQSLAHSRLWDAVVGFLHVFANM 3850
3851 QMKLSQDSSQIELLKELLDLLQDMVVMLLSLLEGNVVNGTIGKQMVDTLV 3900
3901 ESSTNVEMILKFFDMFLKLKDLTSSDTFKEYDPDGKGIISKKEFQKAMEG 3950
3951 QKQYTQSEIDFLLSCAEADENDMFNYVDFVDRFHEPAKDIGFNVAVLLTN 4000
4001 LSEHMPNDSRLKCLLDPAESVLNYFEPYLGRIEIMGGAKKIERVYFEISE 4050
4051 SSRTQWEKPQVKESKRQFIFDVVNEGGEQEKMELFVNFCEDTIFEMQLAS 4100
4101 QISESDSADRPEEEEEDEDSSYVLEIAGEEEEDGSLEPASAFAMACASVK 4150
4151 RNVTDFLKRATLKNLRKQYRNVKKMTAKELVKVLFSFFWMLFVGLFQLLF 4200
4201 TILGGIFQILWSTVFGGGLVEGAKNIRVTKILGDMPDPTQFGIHDDTMEA 4250
4251 ERAEVMEPGITTELVHFIKGEKGDTDIMSDLFGLHPKKEGSLKHGPEVGL 4300
4301 GDLSEIIGKDEPPTLESTVQKKRKAQAAEMKAANEAEGKVESEKADMEDG 4350
4351 EKEDKDKEEEQAEYLWTEVTKKKKRRCGQKVEKPEAFTANFFKGLEIYQT 4400
4401 KLLHYLARNFYNLRFLALFVAFAINFILLFYKVTEEPLEEETEDVANLWN 4450
4451 SFNDEEEEEAMVFFVLQESTGYMAPTLRALAIIHTIISLVCVVGYYCLKV 4500
4501 PLVVFKREKEIARKLEFDGLYITEQPSEDDIKGQWDRLVINTPSFPNNYW 4550
4551 DKFVKRKVINKYGDLYGAERIAELLGLDKNALDFSPVEETKAEAASLVSW 4600
4601 LSSIDMKYHIWKLGVVFTDNSFLYLAWYTTMSVLGHYNNFFFAAHLLDIA 4650
4651 MGFKTLRTILSSVTHNGKQLVLTVGLLAVVVYLYTVVAFNFFRKFYNKSE 4700
4701 DDDEPDMKCDDMMTCYLFHMYVGVRAGGGIGDEIEDPAGDPYEMYRIVFD 4750
4751 ITFFFFVIVILLAIIQGLIIDAFGELRDQQEQVREDMETKCFICGIGNDY 4800
4801 FDTTPHGFETHTLQEHNLANYLFFLMYLINKDETEHTGQESYVWKMYQER 4850
4851 CWDFFPAGDCFRKQYEDQLG 4870

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.