| Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q15643 from www.uniprot.org...
The NucPred score for your sequence is 0.97 (see score help below)
1 MSSWLGGLGSGLGQSLGQVGGSLASLTGQISNFTKDMLMEGTEEVEAELP 50
51 DSRTKEIEAIHAILRSENERLKKLCTDLEEKHEASEIQIKQQSTSYRNQL 100
101 QQKEVEISHLKARQIALQDQLLKLQSAAQSVPSGAGVPATTASSSFAYGI 150
151 SHHPSAFHDDDMDFGDIISSQQEINRLSNEVSRLESEVGHWRHIAQTSKA 200
201 QGTDNSDQSEICKLQNIIKELKQNRSQEIDDHQHEMSVLQNAHQQKLTEI 250
251 SRRHREELSDYEERIEELENLLQQGGSGVIETDLSKIYEMQKTIQVLQIE 300
301 KVESTKKMEQLEDKIKDINKKLSSAENDRDILRREQEQLNVEKRQIMEEC 350
351 ENLKLECSKLQPSAVKQSDTMTEKERILAQSASVEEVFRLQQALSDAENE 400
401 IMRLSSLNQDNSLAEDNLKLKMRIEVLEKEKSLLSQEKEELQMSLLKLNN 450
451 EYEVIKSTATRDISLDSELHDLRLNLEAKEQELNQSISEKETLIAEIEEL 500
501 DRQNQEATKHMILIKDQLSKQQNEGDSIISKLKQDLNDEKKRVHQLEDDK 550
551 MDITKELDVQKEKLIQSEVALNDLHLTKQKLEDKVENLVDQLNKSQESNV 600
601 SIQKENLELKEHIRQNEEELSRIRNELMQSLNQDSNSNFKDTLLKEREAE 650
651 VRNLKQNLSELEQLNENLKKVAFDVKMENEKLVLACEDVRHQLEECLAGN 700
701 NQLSLEKNTIVETLKMEKGEIEAELCWAKKRLLEEANKYEKTIEELSNAR 750
751 NLNTSALQLEHEHLIKLNQKKDMEIAELKKNIEQMDTDHKETKDVLSSSL 800
801 EEQKQLTQLINKKEIFIEKLKERSSKLQEELDKYSQALRKNEILRQTIEE 850
851 KDRSLGSMKEENNHLQEELERLREEQSRTAPVADPKTLDSVTELASEVSQ 900
901 LNTIKEHLEEEIKHHQKIIEDQNQSKMQLLQSLQEQKKEMDEFRYQHEQM 950
951 NATHTQLFLEKDEEIKSLQKTIEQIKTQLHEERQDIQTDNSDIFQETKVQ 1000
1001 SLNIENGSEKHDLSKAETERLVKGIKERELEIKLLNEKNISLTKQIDQLS 1050
1051 KDEVGKLTQIIQQKDLEIQALHARISSTSHTQDVVYLQQQLQAYAMEREK 1100
1101 VFAVLNEKTRENSHLKTEYHKMMDIVAAKEAALIKLQDENKKLSTRFESS 1150
1151 GQDMFRETIQNLSRIIREKDIEIDALSQKCQTLLAVLQTSSTGNEAGGVN 1200
1201 SNQFEELLQERDKLKQQVKKMEEWKQQVMTTVQNMQHESAQLQEELHQLQ 1250
1251 AQVLVDSDNNSKLQVDYTGLIQSYEQNETKLKNFGQELAQVQHSIGQLCN 1300
1301 TKDLLLGKLDIISPQLSSASLLTPQSAECLRASKSEVLSESSELLQQELE 1350
1351 ELRKSLQEKDATIRTLQENNHRLSDSIAATSELERKEHEQTDSEIKQLKE 1400
1401 KQDVLQKLLKEKDLLIKAKSDQLLSSNENFTNKVNENELLRQAVTNLKER 1450
1451 ILILEMDIGKLKGENEKIVETYRGKETEYQALQETNMKFSMMLREKEFEC 1500
1501 HSMKEKALAFEQLLKEKEQGKTGELNQLLNAVKSMQEKTVVFQQERDQVM 1550
1551 LALKQKQMENTALQNEVQRLRDKEFRSNQELERLRNHLLESEDSYTREAL 1600
1601 AAEDREAKLRKKVTVLEEKLVSSSNAMENASHQASVQVESLQEQLNVVSK 1650
1651 QRDETALQLSVSQEQVKQYALSLANLQMVLEHFQQEEKAMYSAELEKQKQ 1700
1701 LIAEWKKNAENLEGKVISLQECLDEANAALDSASRLTEQLDVKEEQIEEL 1750
1751 KRQNELRQEMLDDVQKKLMSLANSSEGKVDKVLMRNLFIGHFHTPKNQRH 1800
1801 EVLRLMGSILGVRREEMEQLFHDDQGGVTRWMTGWLGGGSKSVPNTPLRP 1850
1851 NQQSVVNSSFSELFVKFLETESHPSIPPPKLSVHDMKPLDSPGRRKRDTN 1900
1901 APESFKDTAESRSGRRTDVNPFLAPRSAAVPLINPAGLGPGGPGHLLLKP 1950
1951 ISDVLPTFTPLPALPDNSAGVVLKDLLKQ 1979
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
NucPred score threshold | Specificity | Sensitivity |
see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
0.10 | 0.45 | 0.88 |
0.20 | 0.52 | 0.83 |
0.30 | 0.57 | 0.77 |
0.40 | 0.63 | 0.69 |
0.50 | 0.70 | 0.62 |
0.60 | 0.71 | 0.53 |
0.70 | 0.81 | 0.44 |
0.80 | 0.84 | 0.32 |
0.90 | 0.88 | 0.21 |
1.00 | 1.00 | 0.02 |
Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.