 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q17307 from www.uniprot.org...
The NucPred score for your sequence is 0.71 (see score help below)
1 MKLAFNKLLVASVVFTVLSFGLLLASLFTTTATTPSEWTILLPEFRFPVN 50
51 KKQTTEQFLVEKIVHEHEEGEDVRSALYLTHHGYFMNAIANMKVTYRQKS 100
101 YTVNDVCFKPHSAIFENVPAPENIDKLPAYFQRLLLEMQRLSPCLIVTPL 150
151 NCFYDSYHIHSEISNWNASTDYLNRRLRNSYLEAIEEKDSRPYVKSTYGP 200
201 ELIKEWARHMFAIPSKPLSNFSKSDLYSRVKTWLSSIAARKKICADPMRS 250
251 CDETLDAENYFNVCTVMQQINDYDERRKQRLKFQLEYGDEEFTTRLDCVE 300
301 DREKFIEWMQERNLRDMLKLFASSVEIPDHKEIPNQVCDGIYHDLDTSSG 350
351 LELFRGARSFSNNTSAYDTINVELGFMTPENLLTTMRHSDFVNGFESIWT 400
401 IERARELLNEFRLALKVEVTKFSESRSSRRVKVTTRIVNQIEEEGSDEEM 450
451 EYHMIYFILGACALMVALFAAFAFSEAFLTSLSMFLLRGFITGLLFIFLC 500
501 KSGGLILIDSNFLCYITMHLAFNLVMTARVTFICYRIGGCVQSEKDFVKS 550
551 NFSSLGSVPVDSLKEDSCKRHVQYVLAKYTKFQVAQDAYSEEPFEKLPKY 600
601 WFLIAIVLVPVIGVYWFFIDSDVQKICIVLLPAFLIAAFEEMRVKNQLLR 650
651 ERRIKKAIQRLQKEENTRIMSRGEIDNLLSGNAELSGEKSHYESKQGVLH 700
701 HGSAGGLFELSRSTYDVSLIMAYPNQMIRNLRLCALGAYFRLFKMKYCAV 750
751 VVSSVAALLILLSIGLLFIPVQRSSVPKELQQDELSIDFAIPNVSSSSWE 800
801 SINEYLEEFNSEIDSITNLQTITNGRRVLINSTSKINNFLKWVDDEPISW 850
851 YLTAPLTRPYRKTHLPNPFRFQFRYGFDSIQKSTIIDVVERIDTLLTKYT 900
901 ETLSFPKAIGFLYEHYHQKAVVWNSFAYHEIFAAAVLAGFFSIIVVFFSI 950
951 GPVVLPTLAFAFFVVGNRLEIAAIVSLFSLEYHQCYTNVAVFVGFLAAWT 1000
1001 PFCDLARFRGRLLYKDQTRRTPELATQRRIRVPHVAAVDTVQIFAIFLTA 1050
1051 TILLIVITAIIPQFRAFFIPTVILLITLLLAVFNSLAVSLAAYQMFEHEV 1100
1101 RHCYHDQLQSLTTTGKVCDMTRKKLLPREEDLSIPMEEFSIRPTENTKHY 1150
1151 APRPIDNSDPPEQAADEEVVNQDPSMEAARRQYVEFTHRTTGMPIELINQ 1200
1201 FVDNFPVFNVPANFLPNYFALGGAPLDANNGVLLRQPGIAPPPRPNREED 1250
1251 EEERFGLGGGEDDDSYPSSGDDIGDPAKEQQEVTDDVATRYKEEEVRKKV 1300
1301 QPAVPNYDDPNVPGPSNPVPRQVEQVSREAPEDSPNREPRILVYQRPPRL 1350
1351 HEIPQISHGRNPLHDPPSMEEYVQKYDDPNQPPSRRADQYPPSFTPAMVG 1400
1401 YCEDVYWKYNERNLPDNVPMPPRPRDWDQRRLVELPPPEDFDEVPPPGRS 1450
1451 AIPIPPGAIRLRERRREQHLREQEARRNRPESPDDTPGL 1489
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.