SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q17353 from www.uniprot.org...

The NucPred score for your sequence is 0.93 (see score help below)

   1  MSASSTSSSSTSCPEGGEPSGSCKSSDEGESTLKKRMQQYGIASGYANSS    50
51 ISTLDRSQYQSLPLNGTRRVTVQFGRMKIVVPWKESDQTVGQLADAALLR 100
101 YKKARGMANEDRIHVHRLECASDGGILDMDDVLEEVFDLNYDQILAITDE 150
151 ANGGSTTPTYSQIQKQQHHYAQPLPYARKFDGGPSTPIASAFGSVTVNHQ 200
201 AHRAASPYNVGFARSNSRDFAPQPTHSKERRDSVVEVSSFDQIPQSGLRV 250
251 STPKPSRQSEDVIDGKPMNQPILRSSLRTEASGSRTEEATPVKQSRVTLS 300
301 PEVEKKLAEQDERKSERRKHYDKNPGRFARGSDRKSRITDALLDARDRIA 350
351 DQLESQNPAEETKSQMIRVKIDQGPMPGTSLVTFPPIPEKSENEKQLGIE 400
401 VNAVFDESSELPGTSEPTKLSSVQIMKIEDGGRIAKDGRIRVGDCIVAID 450
451 GKPVDQMSIIRVRASISDLAAVTSRPVTLIINRSLESFLEQESSAKPIQS 500
501 ALQQANTQYIGHTTVVELIKSSNGFGFTVTGRETAKGERLFYIGTVKPYG 550
551 VALGHLKSGDRLLEINGTPTGQWTQSEIVEKLKETMVGEKIKFLVSRVSQ 600
601 SAIMSTSASSENKENEETLKVVEEEKIPQKLPLPALMTPPVPKDTPALSP 650
651 SGASRFEIVIPFINGSSSAGLGVSLKARVSKKSNGSKVDCGIFIKNVMHG 700
701 GAAFKEGGLRVDDRIVGVEDIDLEPLDNREAQAALAKKLKEVGMISSNVR 750
751 LTISRYNECNPGQISRDLSRITVDASSPSPSSRMSSHTAPDSLLPSPATR 800
801 GTSSSGADSSHSRQSSASSAVPAVPARLTERDSIVSDGTSRNDESELPDS 850
851 ADPFNREGLGRKSLSEKRGMGAAADPQHIKLFQDIKHQRQNSAPTSSTQK 900
901 RSKSQPRSSSQRNYRSPMKLVDLPTTAAASASTNSQNLDDSDMLNRRSQS 950
951 MESINRPVESILRGTGQIPTGSSSKVQFMQAASPDQHPFPPGAALLRLKN 1000
1001 EESRSRDKSRRKSMGNPFSAMRNFFGFGSKSRDASPEKTPTESVQLRSVE 1050
1051 RPKSIIDERNNGSSERAPPPLPPHQSQRRGSGGNVFVDYGEPYGLIPQYP 1100
1101 HNTTSGYESYADSELYDRYAAHRYHPRGGPIIDEDEYIYRQQSTSGNSPI 1150
1151 NTSSYVNYGLPASNAYHVGSRIPPQTSSGSISKTSGAMRRVYPAEYDEDV 1200
1201 AYHQQIPQQSTRYQQGSGSGRGNADYHHMFNSWFAYTGGGAVGAAPVIKS 1250
1251 SYGSSPVRIAAASAIERGESFVVEPVSGSSASATDRRGRSTSSGAVASGS 1300
1301 SSTGFQYAAKEKYADARSGKFNGGSTRLFIPRHGGGLSAAAFATNFGGEA 1350
1351 YETRGGGAGGSPSQYRRRDQGPPHRFPQY 1379

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.