 | Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden. |
NucPred
Fetching Q17551 from www.uniprot.org...
The NucPred score for your sequence is 0.80 (see score help below)
1 MSFFLREIDGERVCSTSTETSIPEDRKSARRLRKLLYKCAENTCKPDILR 50
51 VPAHCGKLDKEEEKSKTPLDQQQQINFHDILNSKFVVGPPSPFALVAIAK 100
101 SILARFGNPEEVSEKEDGSEEEAGTSGADEEGKQYKNTDQLVGASLTCIF 150
151 EVLEQLSRRDAELCVQALESLLSLIQSMPIDCLQSENRLSMSAMMHVLKT 200
201 LREDACPSVSSKATSCLVALSVACGEPEHLGSTIRSLICMKKNIRMSADS 250
251 TYDMIQMPENLRKLLLKVRRKALGGDNTANSPPNWAMVDVHEHSVASSFS 300
301 LPSLPDSSPSSDTPDDDNRIHSTMACDGTFLYILNYVGLYKLGTGLNETI 350
351 SGKLYAANQSLQSSKNVQMYLCNGSLYLRRNYSSCISVIDTDSLLDIGEV 400
401 ILPPSCVQHALFTDGTYFYSATLIANSTLSTIQLNDSFSPSNEPSSRRSH 450
451 RLTDVKFTIQGDLQVPHQLPEFLPANLHPQTVDLHFTREMAFIQARSGKV 500
501 YYAGNGTRFGLFETGNNWMELCLPEPIVQISVGIDTIMFRSGAGHGWIAS 550
551 VDDKKRNGRLRRLVPSNRRKIVHVCASGHVYGYVSENGKIFMGGLHTMRV 600
601 NVSSQMLNGLDNVMISSLALGKSHGVAVTRNGHLFTWGLNNMNQCGRVES 650
651 TSTTSSPRHSGRQEYQICPIGEHTWLTDTPSVCAQCGLCSARGVACGRVP 700
701 RPKGTMCHCGVGESTCLRCGLCRPCGEVTEPAQPGRAQHVQFSSTAAPQR 750
751 STLHPSRVILSQGPHDVKVSSVSCGNFHTVLLASDRRVFTFGSNCHGQLG 800
801 VGDTLSKNTPQQVILPSDTVIVQVAAGSNHTILRANDGSVFTFGAFGKGQ 850
851 LARPAGEKAGWNAIPEKVSGFGPGFNAFAGWIGADGDSSIIHSHTALLSS 900
901 DNILKAQIVANKTNIFIFPREVGKDYIVIRRKLNVFEHHASDYKCWYTSW 950
951 ATDPKYDMLWYYNSAEMEIKGYDIFKKSEKSVGDAFDSLTFLAGAEFAVQ 1000
1001 VYDSPAYATSMSLGMQLLSATFSANVINLSEFWKEKHGEREQDHEKTIMD 1050
1051 GYSVANRFDGTGGGWGYSANSVEAIQFKVSKEIRLVGVGLYGGRGEYISK 1100
1101 LKLYRQIGTEADELYVEQITETDETVYDCGAHETATLLFSQPIVIQPNHW 1150
1151 HVVSAKISGPSSDCGANGKRHVECDGVTFQFRKSAVSNNGTDVDVGQIPE 1200
1201 LYYQIVGGSESRDESDSNKQLSISRDMSNLFSPAALKNVTAEGIGNLLIL 1250
1251 LEWALQRVQIDEDTNNQVEGSAENQWSQERAGFVAILSMKLISRFVRTVY 1300
1301 KEKGCHDEPGIDFANKLVNLHSMLLEFFFSTDMTGYENRPLIKKEEKVVE 1350
1351 EGYTLMKCVSEAVKLFISLSHCFMGSRSLMNAHLIAVMNKGNHEALILTS 1400
1401 AIIGSLAKIERFAHQLLCSTTTTERFPMLSSLLLKHFNCEKETLASLTSF 1450
1451 PNILRFLYDQTFMRNAYENTSSLAEAILVKVSRDLAIPTDDTLMGPVVHQ 1500
1501 TSSRFRRRSAQPTWDMSDGCADAIAFRVDSEGIKLHGFGIYLPTEPDRRN 1550
1551 FVGEIMMLSPDSSEKWTCLLRVTAEMSSEEKEVGIVRFPEYVLLSPGVTY 1600
1601 AVKVNMMKNTKTFCGEGGVTQVHLLNGARLFFSGCSMSQNGTTVQRGQLP 1650
1651 YLIYSILDQSNSLQIKQETIYDTFTLLLRLMANKIGAAITEGGALPACCQ 1700
1701 HLMSHINPHVMVYMERFPDKALEMMSTMEQLIPMVSNLNGVERVFHSYDS 1750
1751 DDSGCDTPYSGIVTTVVESQHPYKPNTSSSMVLLFEEADYICVRFSPDCQ 1800
1801 TAQFDDQLTIYLKIDEHSYMPIERCYGSEWPSYPMILPGNCLMFVLDASS 1850
1851 AVEGATSEQMFGYHVTVTGYLVGYNDSTMRLEQDLVWLSANACRIMTQLP 1900
1901 INPSNIEHLSTAEDDTRHLFEKHGSLLKKGLSLSHSPTLSELCTKGQPPP 1950
1951 AQSADLQFLREFLSGHTSTSAGFLAKWLPTGSVVDASKCQLSLSHDDLIV 2000
2001 GKAVTLKLLCKDQYDREVDCPKLQVEVFASLGHRNPSSTIHQNLHIGNLP 2050
2051 SSLLIHQNPFQPIIVNHTRYMNIAAMPAYANYSVEEIRLGFMIEELVKDR 2100
2101 VPLKSSDSSLFSGTWTPTTAGKYRIECKVDGSDISHTYTVEVTERPHRAG 2150
2151 KGTITKPSGSRRGAQMTVARTVSIPFSSDFSGIRMRLGTTLASTSVGVIP 2200
2201 RGALVEFIEEMDNDDGKWIRLTDETALLYGCNQGVGQVWCLAYHRPLQRE 2250
2251 LIPLKADTDREKAVKLRRKEIEKESNGSKHHSVSIDAKETYILSPNDVLQ 2300
2301 VYSTPAPHSMIDGEKIIGPCDLMSSGWLANRHGVWIKLTGVEKYVLQKND 2350
2351 PSSETSLSFSTNGNDEEDLERPIERKKTRLPNALTPSVADCIRAVFAAFV 2400
2401 WHEHLVKDLMAAAAYLRFHQNLHNIWQSCEIPSCTNAPAALQPIVKIWRE 2450
2451 ICEVVETSVEQHLIMPPVSNKAMRAETVKPPSRSGGCELCDANITVPLTV 2500
2501 HLRMAHPGCGGDCLGYGYNSNGKFTTGWSGECGAGGRGQSPWYLLCNTCR 2550
2551 SQYLKKTPAGHHQERTRRWREFRFSTSASDARPEVIIRQNAMFLLDLNSR 2600
2601 LQTESNSSSTATSGWTINLFPTHLSTPSTMPRSQQKRLDVPPNNSVHQNS 2650
2651 YMKLGYSSDPGPKVNVIMSPPNQGADQSASLNRPGPSAINEPAEVLQSPS 2700
2701 AALRTLFSNTNPSTSALLKRPVLAFCVEHHDLKRIKSACVQSVRRAVAFS 2750
2751 HAFRVWNWLLRMVSSEYSVSDIILQYLTTLTSYNRLAEYMFSAKKNSNIL 2800
2801 PHPWRLCFLAGPIAADMVTQLHAFLHTVSIILQSAGVDGRLKSLCFKSWT 2850
2851 LQLTAQEQDLLILTCNILGTVGGILSDTSILDSDNRFVKEMKDITKFADI 2900
2901 TASSRQAMVICLTDESGETFWESGEEDKNRSRSLSVQLDESAHGEILSLF 2950
2951 IDNARDEGYRISSIAFKAILEDGRRKDLTSLTLESAYCGWLKCCIKDISH 3000
3001 IQIQFKGPNPASRIRQLMILGYPAKTTGTPRLAPSTSHHLFFSDTQRDAF 3050
3051 ALFQAISSQAFCGELSEDDTLRERVIDLLFSRVQLYPLQNYVYTQVVQAM 3100
3101 EKEVELLCDKSKRNYSYCCGLMSLLVRICDSRGNMDSFGQRNSVLTSITQ 3150
3151 LLIFSPVVVQRQCLNSLECIFASFTPSNVEVPKIIRNLLVVVGKVIQLQV 3200
3201 RDKAAHTVVTVHLCSSVLNAPQNWRVDKSIDMDIGRQTAVLVENLCNGTY 3250
3251 TPEWSNATKCELANCLLSLIQMPESVSYTETLSTGGKSKAVAVVSSKRFW 3300
3301 TAISSLSLIKDKSWLELSERWKTVQDEEDQEPVLLCENHDDGHTVAQVFC 3350
3351 VDCDVALCKECFTVMHLHKKNRNHGVKNLVQSSTQHDINIHQGCARMKFL 3400
3401 NFLILFHGEALNGMVEVAADTLFPTSTSSIQPAMQSSSAFLGIHPMTCRF 3450
3451 CGNNVPVEDQSLDGTCTHEDCVNYAKTACQVMHTCNHFCGGIRNEEECLP 3500
3501 CMTCKREDAAQDGDDVCVICFTERLGAAPCIRLGCGHMFHFHCVRMILER 3550
3551 RWNGPRIVFRFMQCPLCIQPIEHSGLQDLIEPLKTIRQEVVDKAKMRLEY 3600
3601 DGLLTTPALTDPRSEFYNQPEEYALDRYMYVLCHKCKKAYFGGESRCQAA 3650
3651 LDSSQFNPEELLCGGCSDTSGVQVCPRHGVEYLEYKCRFCCSIAVYFCFG 3700
3701 TTHFCAPCHDDFQRLMSLPKHLLPTCPVGPRSTPMEEQTCPLKMKHPPTG 3750
3751 DEFAMGCGICRNISTF 3766
Positively and negatively influencing subsequences are coloured according to the following scale:
(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)
What does the NucPred score mean?
| You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper. |
| NucPred score threshold | Specificity | Sensitivity |
| see above | fraction of proteins predicted to be nuclear that actually are nuclear | fraction of true nuclear proteins that are predicted (coverage) |
| 0.10 | 0.45 | 0.88 |
| 0.20 | 0.52 | 0.83 |
| 0.30 | 0.57 | 0.77 |
| 0.40 | 0.63 | 0.69 |
| 0.50 | 0.70 | 0.62 |
| 0.60 | 0.71 | 0.53 |
| 0.70 | 0.81 | 0.44 |
| 0.80 | 0.84 | 0.32 |
| 0.90 | 0.88 | 0.21 |
| 1.00 | 1.00 | 0.02 |
| Sequences which score >= 0.8 with NucPred and which
are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.) |
Go back to the NucPred Home Page.