SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q20060 from www.uniprot.org...

The NucPred score for your sequence is 0.99 (see score help below)

   1  MPPKTSAAPPQSDESDSDFDDAPVKKPQKKTTKPVNRHKEGSKDPEEELQ    50
51 RAVNEKFDGSDGEDDDSDLFSLQLPSRPDFLTKPNRADRLMIRNVEVDNF 100
101 KSYFGKASIGPFHKSFTSIIGPNGSGKSNLIDSLLFVFGFRASKIRSAKV 150
151 SNLIHKSAGRNPDKCTVTIHFQRIVDIPGHYEVVKDSEFTISRTAFQNNS 200
201 SSYAIDGRPATKNEVEARLRRVDIDIEHNRFLILQGEVEQIAMMKPVKTT 250
251 KSETGMVEYLEDIIGTNRLEPFVKLFQRRVNRLTCDLSQQRIARDHARNS 300
301 KVAMENPVRAAIEFLMKENEATTIHMKLEQRRRQRYLDKIAPKQAELDKM 350
351 KEEMKSIAETLDTNKNEYKQSEEAQKVMIEERSKLDKNFDSLSKELSDLG 400
401 TEETRRKEALKRHQANISKAEAEKEKEVKKRSNLEAAPEKAERKIAKCQE 450
451 EVEQLLEIEKTANEEADKNLDEFEKRSEAPKEEQKKIQETWAQKSNEFNK 500
501 VRGEARIAREDFEDLKKLANSGTDKLIELKKRLESSEESYAKEKDELDKL 550
551 KPEFDSWNDKLKQLSTELPTLRNTARQKNQDLAKTRDRLETLRQQNSSCS 600
601 SSNKVIQALMKEKEAGRIKSFHGRLGDLGVIDPKYEGAICTNFGARLNYL 650
651 IVGKEEDAKNVINFLVANKLPRQTVQPLDKIKCDKRDLAPNPTNPLPAPR 700
701 LIDLIDCDPVLKPAFYDMVRSAIVGDSTQEAQRMHRMPACRGVTVCTLEG 750
751 SMIHPSGSFTGGGKTVKGLILTDKNKMAKQVTPEDKAAERDLAEKLGKLR 800
801 DEADELKGQEHEMDGQLIEARRKVAEMSNRLSIVTSSVQSAAPAIETLKK 850
851 TIANQEKEAAKVKVDAKTLEDKQKIVEELEKKRDELGEEAAKVKARQAEI 900
901 QSKLDGIFKELVQCHRDEAKESLQKRQKLEKDIAKETANISNSGRNIAKC 950
951 DENISRHDKDIEKMKKKCEELMEKAIDDEEVKSKKETVERFEKQIKKLQT 1000
1001 KGEEMTKKQSELSAAETKLEGELKKCSEGIKELKESMLADRLKVEDIEKK 1050
1051 LAALKVNRIPRFQFLIESSRPEDLEMQIDDKMPVVDENQSPEEVERQKKH 1100
1101 MACVMSDAAYALEFEMRQKVLENTESYENVDGEDRVPVELLSDEKINEIS 1150
1151 SRDAEEMQMKLKVCEQQVEALKAKVDISSIKAYVDKVKQYNEQVIKLTIA 1200
1201 TEVHRKHNQELQRIKQMRLEEFHSAFEFIGKHLVAVFKMLTDGGDAKLEY 1250
1251 IDKDDPFRQGISFMVRPAKKAWKQIQFLSGGEKTLSSLALIFALHMFRPT 1300
1301 PFYVMDEIDAALDYRNVSIIAQYVRQKTENAQFIIISLRNNMFELANRLV 1350
1351 GIYKVDGCTRNVAIDPLRVCEMAKQITDSLGQATCTLPDEVTQRFNETMS 1400
1401 RQNKEMIAQEKQYPNFPSSNEISKAEKIVNVEGRVRKELIQTTRDVTSRP 1450
1451 QSKATTSGDGTERPASRSASRPESRINQMKYPAPRLVERSSSQNVRSPRK 1500
1501 ARNIEADETTPPSKRSNSASTPKRSPMKPLTPSSKKKEKAIVDDDDDME 1549

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.