SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q23495 from www.uniprot.org...

The NucPred score for your sequence is 0.64 (see score help below)

   1  MATSLTSQLENLRTSAARHLTVEKRHVSLLFDRKEANKLSNETAHRIGVA    50
51 GLEQMKRIDPVFDTEFANDLFSEERVDFVRSMLEKGANEELNKQIEKLLL 100
101 ELSPYLQHFACQQVLEFLIHTYQIYSFNAETLLLTFLPFHETKVYSRLLR 150
151 ILDFDWKRSKEWQFMQQFTKTETPIPFTSIARATLSSKHSIITCITDHIR 200
201 HAVEIVGSDYLEIKHPILFNFHAKLLLSMFTDPEKVDEMMLAKLMPFIEN 250
251 GIKSPMKSFRYSAMVVISQLVLTVKLKDEVLNSMCKLLITKMRSDTAAAS 300
301 LSTLMVVFQQQNVQSLSKNTLKKLLRHEEGIDVWKILKELSERTDTTKFF 350
351 NVLWKELIVLSKDAESEDNTLAIDVLIETIEDASILTGDQAGTILKLILQ 400
401 EGMDGNIFDNKKKLKSNIRAIGMRFAKQFDAIHAELKAKDKKTLKNVLKE 450
451 YQIEDIVQFASEAVAATQSEESIEIISEEAPSSKKIKLTASEKAQKLAQS 500
501 SEFAKREVFSGDPINKATEWLNGEKWDKVEWALNEMAQRGEKYFSRKVED 550
551 DVEQFVLEIVKVVGVGGVKQIDGGSVKAALAGANLNPQFVADLLTKFDGV 600
601 SEIAPKRTKGAQKKNLVEKTFGTEESWEAFNQRVVFVLDLLNARQIIPSS 650
651 EKVLAALFAVVKQVNSKSDVESSSYQQHLAVNAIRKILEHPEKTKIGASE 700
701 VDMDCVIETMRSTHNHHLLRDCLRLIVAAAKHTPNSVVKHVMSVFTFMGN 750
751 GMLRKDNELTLSIVEKTVESLFSTIINSSGQAVLTKQQQTEKLIELARLF 800
801 AASAIDIPAHRRARIAQAIARAVQAENASTVVLVLVSSFCARWQRSSDAA 850
851 AQEAMKRGSDQDAYDDLAIELLSALNPFEQLSSVLEMCEYVRRLGGDKPA 900
901 KSTTTKKDLDTMIFDRTAQTLPRIRHFRYVVVTLISRIFSNRVLIERLAA 950
951 YDDEELLKNALPLGKRLIECSVELDEFANKEANDQDGSDPQAQRYWVAFA 1000
1001 SRTEVVSEKLRHLLPGGVAARLIADVLQECVNDKKMSYKMCEKVLQLANI 1050
1051 KLGHDRYLFADSGINEKELITLAQALNKFIVAETKSEEKMRMCQNSAYTL 1100
1101 KLIAKNLPSQSESLVLADTMQRCVSIVSQYQKLDENLTGNVLLLAGELIR 1150
1151 SHNMRSTIHHATSLLKTCLATVQECIARFSKPQYDSAASPGSSVAGGRGN 1200
1201 RGHRIRQQSLGGNKFGSDTLLICSLTCIQRVYDQFASFVVESTGDVIIRY 1250
1251 CRLIARFGDPSELLALNQPSSSTTAAFQGGSQTSGFGSKTGIHHRLSLIR 1300
1301 RSLLSIELRVLPAHIVKTVGELKTEKKALSALFNLLTGYIETQHQQKPEI 1350
1351 LRKSVIQLRRTFVSDVITPTLIVRSQERQSDQFENVEKLEHTVFNFVISI 1400
1401 ASILSEVEFRTVVNELVAWAEPGLEAKADLAARLRLVSLLHFANDLYTSF 1450
1451 NSLALPYFGRILEISALVLKKCNATLLLGTDELLLSGKRGSIEALETDLA 1500
1501 LTLAIDVISNAARHRDFFTVDRCQLVSDVIVNELVNTKVEGHEKRCSDHL 1550
1551 VPAIYRIGNADPDSFPELLNKIMLKTRDSRAKIRYRALIVLELLIKEIGD 1600
1601 GVQPHLSILLPFLNELIEDENKQVEAQCQKVINSLQHKFGETFWSGGSSA 1650

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.