SBC logo Authors: Amine Heddad, Andrea Krings, Markus Brameier and Bob MacCallum, Stockholm Bioinformatics Center, Stockholm University, Sweden.

NucPred

Fetching Q27152 from www.uniprot.org...

The NucPred score for your sequence is 0.92 (see score help below)

   1  MFHLLLENEEIQFSNSFAQFYLQVDEAKKIFDEIDDDEYDKIQDQRKNDD    50
51 FIVDDDGYGYRDHGGEIWERDDHPEDGGKKKKKSSMYVFSFSPKFIAQPL 100
101 FLQPNEQSITAFMKPKSTINRPGAVTNSSAQIKQKPKVSAEQSKDIMNNL 150
151 FQELDSKDVDELQDVNNSAVVTELNKPIAFNQNDMLTSKYAVTLETRQEV 200
201 EQKRVTEQIQAQAQIGQNQQSSNPFSKKRKFEEISTNQNANASDSKRVSN 250
251 QTNDNLNKVETQVISMLKVANPQIKVTSKLARMDDSMKIDQTSAQKNQIE 300
301 QTVNHSKLQRYNQNQMMSGIKLDNRTSKPIRNLEIWNQVLANTQEFPLPL 350
351 NENGTLSFYWIDAHEENNGTDLYIFGKIYQPQMRQFVSCSMKVNGMQREL 400
401 YALPKMRGKARGALTVEEEKQQVRAVMMELDDIRKKRFPQISKWRCKPVN 450
451 RKYAFEMPIQHGEHQFLKIKYDSTMPPLPSTIQGNTFECIFGSTQSMLEL 500
501 FILKRKIRGPCWMTIKNPTKVTDFKKTWCRQGIVIDNPKNVEVTLEDLNK 550
551 QELPPLTSLTFSFKTTRAQQNTNEIAMISCLINTNIAQEGPSQVERTQSF 600
601 TLLRKLDGKPMPYDFDQKVKQRKENIIQKFENERQMIEAFIAKVFIVDPD 650
651 LVVAHNLCGGMFDLLLARIQYLKVNHWSRIGRLKKTQIPNKKLDFGGSSY 700
701 GGSQWIPRQVTCGRLLVDTFLSAKELVRETSYDLTYLAKVQLKKDRQDFD 750
751 DELLPTLYITSERLFSLIDHTEKDAYLTIQLMNHLAIIPLTLQLTNIAGN 800
801 LWFRSLQNARAERNEMLLLHEFKKKKFILPDKKAPFAKDFKRNMFADEFE 850
851 ELKSGKGPKKGGKRKKAAYAGGLVIEPKAGFYDNIILLLDFNSLYPSIIQ 900
901 EYNLCFTTVNRRPTKNFDGSEVKSQFKAAGTDANEGNEVEEADLPDKNVN 950
951 VKDAVLPNVLRDLVQKRKAVKEKMKNEKDAVKLSQLEIRQKAIKLTANSM 1000
1001 YGCLGFGSSRFHAQAIAALITKTGRDTLLRTKDIAENKLGFNVVYGDTDS 1050
1051 IMINTGTNQLQQSLEMGKRPQGLKLIALYKCLEIEIDGVFKSLLLLKKKK 1100
1101 YAALKYEGFGTPDAKVVQEVKGLDMVRRDWCPLSKNVGNFVLNQILSGKQ 1150
1151 REDVVLNLNEYLSDIGEKMKNNGITLDQFIITKQLTKAISEYSDIKGQPH 1200
1201 VAVAQRLKNQGKSESDLVNNFIPYVIGAQPFDPSKTNPALAGKAYHPEEV 1250
1251 VSSKGKILLDIEWYITMQVLPPITRLIEHIDGIDVEFVAQCLGVDPKKYK 1300
1301 YHSSEKKTGETNNDDGTLIQNPILQTETERSLKGRTIAELTIKCPHCSES 1350
1351 YHFPGIFQDGKNNTLSGLLCIKCTQPIPEAYIQNRVTLFLKQLLTLYYQG 1400
1401 NKQCQEPACGAVSRQLLYNNKCINLACKLKNDTRYTEQKTNDTLRYLQGL 1450
1451 FNVKKYIQENQKNGCVHKTVEEVPNFDAFARMQGKVDDIMIRSKYNKVDL 1500
1501 SSIFNFMKLGKQQ 1513

Positively and negatively influencing subsequences are coloured according to the following scale:

(non-nuclear) negative ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| positive (nuclear)

with NucPred



If you find NucPred useful, please cite this paper:
NucPred - Predicting Nuclear Localization of Proteins. Brameier M, Krings A, Maccallum RM. Bioinformatics, 2007. PubMed id: 17332022
The authors also look forward to your comments and suggestions.

What does the NucPred score mean?

You have to decide on a NucPred score threshold. Sequences which score greater than or equal to this threshold are predicted to spend some time in the nucleus. Higher thresholds yield fewer predicted nuclear proteins, but these predictions are more accurate (you can have higher confidence in them). The table below gives more details of the performance of NucPred estimated using the sequences it was trained on (by cross-validation). Another benchmark is available in the Bioinformatics 2007 paper.

NucPred score threshold Specificity Sensitivity
see above fraction of proteins predicted to be nuclear that actually are nuclear fraction of true nuclear proteins that are predicted (coverage)
0.10 0.45 0.88
0.20 0.52 0.83
0.30 0.57 0.77
0.40 0.63 0.69
0.50 0.70 0.62
0.60 0.71 0.53
0.70 0.81 0.44
0.80 0.84 0.32
0.90 0.88 0.21
1.00 1.00 0.02

Sequences which score >= 0.8 with NucPred and which are predicted by PredictNLS to contain an NLS have been shown to be 93% correct with a coverage of 16%. (PredictNLS by itself is 87% correct with 26% coverage on the same data.)

Go back to the NucPred Home Page.